
1 Introduction

The content of these notes is also covered by chapter 3 section A of [1].

2 Derivation of the Fokker-Planck equation

2.1 Lattice

A rectangular bi-dimensional lattice can be intuitively thought as a grid composed by rectangles of vertical mesh
size Dt and horizontal mesh size Dx. Points on the lattice (grid) can be labeled by a pair integers of integers (i , n)
respectively specifying the horizontal and vertical coordinate. If the grid contains a countable number of points it can
be identified with Z2:

︸︷︷︸
Dx

Dt {

2.2 Lattice dynamics

Probability on the lattice

P (being at site i at time n) = p̃(i , n) (2.1)

Transition probability

P (jump from j to i in a unit of time ) = T (i|j) (2.2)

At each time step the particle must either remain in the same place or migrate to the first nearest neighbors

T (j + 1|j) + T (j|j) + T (j − 1|j) = 1 (2.3)

Balance equation

p̃(i , n+ 1) = T (i|i− 1) p̃(i− 1 , n) + T (i|i) p̃(i , n) + T (i|i+ 1) p̃(i+ 1 , n) (2.4)

T (i|i+ 1)T (i|i− 1) T (i|i)

(i+ 1, n)(i− 1, n) (i, n)

(i, n+ 1)

The variation of p̃ over one time unit is then

p̃(i , n+ 1)− p̃(i , n) = T (i|i− 1) p̃(i− 1 , n)− [T (i+ 1|i) + T (i− 1|i)] p̃(i , n) + T (i|i+ 1) p̃(i+ 1 , n) (2.5)
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Define the lattice derivative operation

Dn ,±1f̃(n) = f̃(n± 1)− f̃(n) (2.6)

The reason for introducing Dn ,±1 is that it satisfies a straightforward relation with Newton’s difference quotient.
Namely, if we set

f̃(n) = f(nDx) ≡ f(x)

and

f̃(n+ 1) = f(nDx+Dx) ≡ f(x+Dx)

then we get

lim
Dx↓ 0

Dn ,1

Dx
f̃(n) = lim

Dx↓0

f(x+Dx)− f(x)
Dx

=
∂f

∂x
(x) ≡ ∂xf (2.7)

and

lim
Dx↓ 0

Dn ,1 +Dn ,−1

(Dx)2
f̃(n) = lim

Dx↓0

f(x+Dx)− 2 f(x) + f(x−Dx)
(Dx)2

=
∂2f

∂x2
(x) ≡ ∂2

xf (2.8)

as can be verified by Taylor-expanding the numerator around x. The identities (2.7) and (2.8) motivate the following
terminology:

• Dn ,1 is called the lattice forward derivative with respect to n.

• Dn ,−1 is called the lattice backward derivative with respect to n.

• Dn ,1 +Dn ,−1 is called the lattice Laplacian with respect to n

Note that the lattice Laplacian is symmetric with respect to increments. A symmetric definition of the derivative is
obtained by considering

Dn ,1 −Dn ,−1

2
f̃(n) ≡ f̃(n+ 1)− f̃(n− 1)

2
(2.9)

where the factor 2 is introduced to take into account that the function f̃ is sampled at lattice sites separated by two
times the unit mesh size.
In the following two subsection, under hypotheses of increasing generality the balance equation (2.4) will be re-
written in terms of the lattice derivatives with respect to the discrete ”time” n and ”position” i coordinates. The scope
is to ease the study of the continuum limit done in section 2.3 which is used to define the evolution of the probability
density as the mesh sizes Dx and Dt are sent to zero in an appropriate way.

2.2.1 Constant drift and diffusion

Suppose that T (i|j) distinguishes only whether the particle is going to the right or to the left

T (i|j) =
{
T+ i− j = 1
T− i− j = −1

In such a case

Dn ,1p̃(i , n) =
T+ + T−

2
(Di,1 +Di,−1) p̃(i , n)− T+ − T−

2
(Di,1 −Di,−1) p̃(i , n) (2.10)
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Setting

T̄ :=
T+ + T−

2
diffusion

T̃ := T+ − T− drift

(2.11)

one finds

Dn ,1p̃(i , n) = T̄ (Di,1 +Di,−1) p̃(i , n)− T̃ Di,1 −Di,−1

2
p̃(i , n) (2.12)

2.2.2 More general local case

T (i|j) distinguishes whether the particle is going to the right or to the left in a point dependent way

T (i|j) =
{
T+(j) i− j = 1
T−(j) i− j = −1

In such a case

Dnp̃(i , n) = T+(i− 1) p̃(i− 1 , n)− [T+(i) + T−(i)] p̃(i , n) + T−(i+ 1) p̃(i+ 1 , n) (2.13)

Adding and subtracting T+(i− 1) p̃(i , n) and T−(i+ 1) p̃(i , n) yields

Dn,1p̃(i , n) =
T+(i− 1)Di,−1p̃(i , n) + p̃(i , n) [Di,−1T+(i) +Di,1T−(i)] + T−(i+ 1)Di,1p̃(i , n)

The expression can be also rewritten as

Dn,1p̃(i , n) = [T+(i) + (Di,−1T+)(i)]Di,−1p̃(i , n)+
+p̃(i , n) [Di,−1T+(i) +Di,1T−(i)] + [T−(i) + (Di,1T−)(i)]Di,1p̃(i , n)

which is reminiscent of the Leibniz rule in the continuum. The analogy is complete by setting as in the previous case

T̄ (i) =
T+(i) + T−(i)

2
diffusion

T̃ (i) = T+(i)− T−(i) drift

⇒
T+(i) = T̄ (i) +

T̃ (i)
2

T−(i) = T̄ (i)− T̃ (i)
2

In such a case one gets into

Dn,1p̃(i , n) = T̄ (i) (Di,−1 +Di,1)p̃(i , n) + p̃(i , n)(Di,−1 +Di,1)T̄ (i)
+
[
(Di,−1T̄ )(i)Di,−1p̃(i , n) + (Di,1T̄ )(i)Di,1p̃(i , n)

]
+

(Di,−1T̃ )(i)Di,−1p̃(i , n)− (Di,1T̃ )(i)Di,1p̃(i , n)
2

− T̃ (i)
Di,1 −Di,−1

2
p̃(i , n)− p̃(i , n)

Di,1 −Di,−1

2
T̃ (i) (2.14)

which can be more compactly couched into the form

Dn,1p̃(i , n) = Li p̃(i , n)

where the operator Li acts linearly on p̃(i , n) in the way specified by the right hand side of (2.14).
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2.3 Continuum limit

Define the continuum time coordinate as

t = nDt (2.15)

and the continuum space coordinate as

x = iDx (2.16)

We will seek a continuum limit for the equations (2.12), (2.14) assuming the scaling hypothesis

(Dx)2 = σ2(x) (Dt) (2.17)

with σ a a finite strictly-positive function with dimensions

[
σ2
]

=
[
length2

time

]
Furthermore we assume that

T̄ (i) = σ2(x)
T+(i) + T−(i)

2
Dx↓0→ σ2(x)

2
> 0 diffusion:

[
σ2
]

=
[
length2

time

]
T̃ (i)
Dx

=
T+(i)− T−(i)

Dx

Dx↓0→ b(x) drift: [b] =
[
length
time

] (2.18)

and denote

p̃(i , n)
Dx ,Dt ↓ 0→ p(x , t) (2.19)

Using (2.7), (2.8) it is straightforward to verify that these assumptions yield for

lim
Dx↓0
Dt↓0

(Dx)2=σ2Dt

Dn,1p̃(i, n)
Dt

= lim
Dx↓0
Dt↓0

(Dx)2=σ2Dt

Li p̃(i, n)
Dt

the continuum limit

Fokker-Planck eq.: ∂tp(x, t) + ∂x {b(x) p(x, t)} =
1
2
∂2
x

{
σ2(x) p(x, t)

}
(2.20)

3 Probability conservation

The Fokker-Planck equation provides a self-consistent description for the time evolution of a probability density.
Namely (hints of a proof)

• it ensures probability conservation:

∂t

∫
R
dx p(x, t) =

∫
R
dx ∂x

{
∂x
σ2(x) p(x, t)

2
− b(x) p(x, t)

}
= 0

for any p(x, t) decaying sufficiently fast at infinity.
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• If the initial density is positive definite, the density remains positive definite at any time:

p(x, t) = eV (x,t)

yields

∂tV = ∂x

{
∂x
σ2

2
+ b

}
+
σ2

2
{
∂2
xV + (∂xV )2

}
+
{
∂xσ

2 + b
}

(∂xV )

which for

σ2 , b : R → R (3.1)

specifies a evolution for a real quantity V .

4 Extensions to the multi-dimensional case

Inspection of the derivation of (2.20) evinces that the steps involved do not require the diffusion and drift to be time in-
dependent. More laborious but conceptually identical is to repeat the calculation of section 2 in the multi-dimensional
case. The result in the most general case is

Fokker-Planck eq.: ∂tp(x, t) +
∂

∂xi
{
bi(x, t) p(x, t)

}
=

1
2
∂

∂xi
∂

∂xj
{σi l(x, t)σi l(x, t) p(x, t)} (4.1)

where repeated indices imply summations over i, j, l ranging from 1 to the number of dimensions d (Einstein conven-
tion) and

σi lσj l : Rd × R→ Rd×d tensor field

bi : Rd × R→ Rd vector field

Note that

σi lσj l =
{
σ σ†

}
i j

where tr denotes matrix transposition. Thus the tensor field is positive definite with respect to the standard scalar
product in Rd.

5 Diffusion equation

A special case of the Fokker-Planck equation (2.20) is obtained for

b = 0
σ2 = constant

In such a case we get into the diffusion equation

Diffusion eq.: ∂tp(x, t) =
σ2

2
∂2
x p(x, t) (5.1)

The solution of the diffusion equation in the space of probability densities defined over the entire real axis

p : R → R+
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for a given initial condition po(x) = p(x, 0) can be explicitly obtained by considering the Fourier transform of the
diffusion equation

∂tp̌(q, t) = −σ
2 q2

2
p̌(q, t)

which yields the solution

p̌(q, t) = p̌o(q) e−
σ2 q2 t

2

Note that the choice

p̌o(q) = eı q y

yields

p(x, t) =
e−

(x−y)2

2σ2 t

(2π σ2 t)
≡ gy σ

√
t(x)
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