
1 Introduction

The Glivenko-Cantelli theorem is discussed in details in [1] section 36. Nice on-line presentations of the χ2 and
Kolmogorov-Smirnov statistics can be found from OpenCourseWare [2].

Glivenko-Cantelli theorem

The theorem of Glivenko-Cantelli is often referred to in the literature as the basis for mathematical statistics. It allows
us to estimate whether data collected from empirical observations pertain to the realizations of a certain random
variable. Let the collection of numbers {x̃i}ni=1 be the result of re-iterated observations of an indicator X . Let us also
suppose that they are in ascending order

x̃1 ≤ x̃2 ≤ . . . ≤ x̃n

Such data arrangement is often referred to as order statistics (variational series in the Russian literature).

Definition 1.1 (Empirical cumulative distribution). We call the empirical distribution of an order statistics the step
function

Fn[X ](x) =
1
n

n∑
i=1

χ(−∞ ,x̃i](x)

with χA the characteristic function of the set A. By construction the empirical cumulative distribution is mono-
tonic, continuous from the left with jumps corresponding to differing entries of the order statistics. If x? is the location
of a jump, the size of this latter is a multiple of 1/n equal to the number of entries in the order statistics with value x?
If the entries in the order statistics are indeed the realization of n samples of a random variable

ξ : Ω → R

upon setting

Fξ(x) = P (ξ ≤ x) (1.1)

we find that for {ξi}ni=1 a sequence of i.i.d. random variables ξi
d= ξ we have

P

(
Fn[ξ](x) =

k

n

)
=

Γ(n+ 1) [Fξ(x)]k [1− Fξ(x)]n−k

Γ (k + 1) Γ (n− k + 1)

where now

Fn[ξ](x) =
1
n

n∑
i=1

χ(ξi ≤ x)

is the empirical distribution associated to the sequence {xi}ni=1. In the simplest case when

ξ : Ω→ x1 , . . . , xs

the set of frequencies

p̃ =
(m1

n
, . . . ,

ms

n

)
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with

mi = number of observations of xi out of a total ofn observations

the strong law of large numbers ensures us that

lim
n↑∞

mi

n
= Pξ(ξ = xi) a.s.

In general the following result holds true

Theorem 1.1 (Glivenko-Cantelli). Let Fξ(x) the cumulative distribution function of a a random variable ξ and
Fn[ξ](x) the cumulative empirical distribution associated to a sequence of i.i.d. copies of ξ. Then we have

lim
n↑∞

sup
x
|Fn[ξ](x)− Fξ(x)| = 0 a.s.

Proof. Let us distinguish two cases

• Fξ(x) is continuous (and by definition bounded). Define then for any fixed x

η = χ(−∞ ,x)(ξ)

so that

≺ η �=≺ η4 �= Fξ(x)

The strong law of large numbers then implies for i.i.d. copies of η

lim
n↑∞

1
n

∞∑
i=1

ηi =≺ η � a.s.

which yields the proof of the claim by the assumed continuity of Fξ.

• Suppose now that Fξ is only left continuous with a countable number of finite jumps. In such a case

≺ η �= Fξ(x−)

and the strong la of large numbers yields

lim
n↑∞

1
n

∞∑
i=1

Fn[ξ](x) = Fξ(x−) a.s.

Let now choose an arbitrary j ∈ N and define

xi ,j = inf
{
x : Fξ(x) ≥ i

j

}
1 ≤ i ≤ j − 1

The point-wise convergence of Fn[ξ](x) and Fn[ξ](x−) imply that there is an Nk(ω) such that for any n ≥ Nk(ω)

|Fn[ξ](xij)− Fξ(xij)| <
1
j

& |Fn[ξ](xij−)− Fξ(xij−)| < 1
j

(1.2)

By setting

x0j = −∞ & xjj =∞
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the bounds can be extended to any 0 ≤ i ≤ j. Consider now any x in between xi−1j and xij . The monotonicity of
the empirical and of the probability distribution functions allows us to write

0 ≤ Fξ(xij−)− Fξ(xi−1j) ≤
1
j

(1.3)

which in turn implies

Fn[ξ](x) ≤ Fn[ξ](xij−) ≤ Fn[ξ](xi−1j) +
1
j
≤ Fξ(xi−1j) +

2
j
≤ Fξ(x) +

2
j

Fn[ξ](x) ≥ Fn[ξ](xi−1j) ≥ Fn[ξ](xij)−
1
j
≥ Fξ(xij)−

2
j
≥ Fξ(x)− 2

j

Gleaning together the above inequalities, we have proved that for any x

|Fn[ξ](x)− Fξ(x)| ≤ 2
j

⇒ sup
x
|Fn[ξ](x)− Fξ(x)| ≤ 2

j

The arbitrariness of j yields the proof of the claim.

The Glivenko-Cantelli theorem is a strong law of large number type result. Bulk fluctuations around this result
are taken into account by a central limit type result:

P
(√
n[Fn[ξ](x)− Fξ(x)] ≤ t

)
→
∫ t

σ(x)

−∞
du g0,1(u)

with

σ(x) = Fξ(x) [1− Fξ(x)]

the variance of χ(−∞ ,x)(ξ).

1.1 Kolmogorov-Smirnov test

The practical importance of the Glivenko-Cantelli theorem for statistics comes from the observation in that the dis-
tribution of the supremum of the distance between the empirical and the theoretical cumulative distributions does not
depend on the distribution Fξ of the sample, if Fξ is a continuous distribution. Theoretical background on the tests is
also provided by [3] (chapter 1) and [4] (chapter 14).

Proposition 1.1. If Fξ(x) is continuous then the distribution of

ηn(x) := sup
x
|Fn[ξ](x)− Fξ(x)|

does not depend on Fξ .

Proof. Let us define the inverse of Fξ by

F−1
ξ (y) = min {x : Fξ(x) ≥ y}

Using the definition we can write

P

(
sup
x
|Fn[ξ](x)− Fξ(x)| ≤ y

)
=

P

(
sup

0≤ y≤ 1
|Fn[ξ](F−1

ξ (y))− y| ≤ t

)
= P

(
sup

0≤ y≤ 1
|Fn[Fξ(ξ)](y)− y| ≤ t

)
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The random variable ζ := Fξ(ξ) is uniform in the unit interval:

P (Fξ(ξ) ≤ y) ≡ P
(
ξ ≤ F−1

ξ (y)
)

= Fξ

(
F−1
ξ (y)

)
= y

hence

P

(
sup
x
|Fn[ξ](x)− Fξ(x)| ≤ y

)
= P

(
sup
x
|Fn[ζ](y)− y| ≤ t

)
where the right hand side is independent of Fξ.

The explicit form of the distribution of η(x) is given by a theorem proved by Kolmogorov:

Theorem 1.2 (Kolmogorov).

P

(√
n sup

x
|Fn[ξ](x)− Fξ(x)| ≤ y

)
= 1− 2

∞∑
i=1

(−1)i−1e−2 i2 y

We can now use the above result to set up a statistical test. We are given a set of data organized in an order statistic
and we wan to test two hypotheses

• null hypothesis (H0): the unknown cumulative distribution Fζ to which the data pertain is equal to Fξ

• alternative hypothesis (H1): the unknown cumulative distribution Fζ is not equal to Fξ

If the null hypothesis holds true in the large n limit Fn[X ](x) converges to Fξ(x) and

ηn(x) → 0 a.s.

On the other hand if H0 fails even for large n

ηn(x) > δ > 0 ⇒
√
nηn(x) >

√
nδ ↑ ∞

Definition 1.2 (Kolmogorov-Smirnov statistic). If Fξ is the conjectured cumulative distribution the Kolmogorov-
Smirnov statistic is

KSn :=
√
n sup

x
|Fn[X ](x)− Fξ(x)|

A decision rule D can be defined by choosing a threshold value t so that

D =
{
H0 if

√
n ηn(x) ≤ t

H1 if
√
n ηn(x) > t

The threshold value is determined by the required level of significance α of the decision rule

α = P (D = H0) = P
(√
n ηn(x) ≤ t|H0

)
For finite n we can tabulate the probability in (1.4) using its very definition, in the large n limit we can resort to
Kolmogorov’s theorem. In summary:

• Formulate a conjecture for the data cumulative distribution, say Fξ.

• Compute the Kolmogorov-Smirnov statistical indicator KSn.

• Fix a significance level, i.e. the probability that it is consistent to accept the null hypothesis.

• Use the significance level to determine the acceptance threshold t.

• Compare KSn with t.
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2 Empirical description of a probability density

The histogram is a graphical tool to display the content of an order statistics. Let us suppose that we gathered n
observations of an indicator X which we conjecture to be modeled by a continuous random variable ξ

ξ : Ω→ [xmin , xmax]

we can use these observation to approximate the probability density pξ by means of simple functions over I =
[xmin , xmax]. This can be done e.g. by defining a uniform partition of I in n` bins of width ` so that

|I| = n` `

The i-th bin of the partition the interval x ∈ (xi−1 , xi] with i = 1 , nell and x0 = xmin, xn` = xmax. We can then
count the number mi of events coorresponding to values of x in the range of the i− th bin. We have

n =
n∑̀
i=1

mi ⇒ 1 =
n∑̀
i=1

mi

n

The graph of (i ,mi) is called the (uniform) histogram ofX . In order to define a discrete approximation to a continuous
function we further observe that

n∑̀
i=1

mi

n
=

n∑̀
i=1

`
(mi

n `

)
(2.1)

We can interpret the right hand side of (2.1) as a Riemann sum where

dx ∼ ` =
|I|
n

& pξ (x̄i) =
mi

n `
x̄i ∈ (xi−1 , xi]

From the algorithmic point of view, an histogram is efficiently constructed as follows Two observation are in order:

Algorithm 1 histogram algorithm
READ ` (set bin width)
n` = d(xmax − xmin)/`e (compute the integer part e.g. by taking the ceiling)
for i = 1, n` do
histogram[i] = 0 (initialize histogram bins)

end for
for i = 1, n do

READ data[i] (store the i-th empirical data into data[i])
j = d(data[i]− xmin)/`e
histogram[j] = histogram[j] + 1/(n ∗ `)

end for
stop

• The accuracy of the approximation depends upon the choice of the bin width. This latter is in general chosen
taking into account the size of the observation sample n and the known statistical properties of the data. In
some cases non uniform partitions may be more attuned to encode the data.

• If the distribution is expected to have infinite support, tail events can be included in dedicated bin of infinite
width e.g. x ≤ xmin or x ≥ xmax.
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