1 Introduction

The lecture notes complement sections H and I of chapter 2 and appendix B of [1].

2 Four inequalities

The three inequality below are commonly used in probability and the theory of stochastic processes.
Proposition 2.1 (Cauchy-Buniakovskii inequality). Let ξ and η, two Borel measurable random variables with finite second moment. Then

$$
\prec|\xi \eta| \succ \leq\left(\prec \eta^{2} \succ\right)^{1 / 2}\left(\prec \xi^{2} \succ\right)^{1 / 2}
$$

Proof. By definition

$$
\prec|\eta \xi| \succ \equiv \int_{\Omega} d P(\omega)|\xi(\omega) \eta(\omega)|
$$

Set

$$
\tilde{\eta}=\frac{\eta}{\sqrt{\prec \eta^{2} \succ}} \quad \& \quad \tilde{\xi}=\frac{\xi}{\sqrt{\prec \xi^{2} \succ}}
$$

then

$$
0 \leq \prec(|\tilde{\xi}|-|\tilde{\eta}|)^{2} \succ \quad \Rightarrow \quad 2 \prec|\tilde{\eta} \tilde{\xi}| \succ \leq \prec|\tilde{\eta}|^{2} \succ+\prec|\tilde{\xi}|^{2} \succ=1
$$

whence the claim.
Definition 2.1 (Convexity). A Borel (-measurable) function is sadid to be

- convex iffor any two points x and y in its domain of definition Ω and any $t \in[0,1]$

$$
f(t x+(1-t) y) \leq t f(x)+(1-t) f(y)
$$

- concave iffor any two points x and y in its domain of definition Ω and any $t \in[0,1]$

$$
f(t x+(1-t) y) \geq t f(x)+(1-t) f(y)
$$

An example of concave function is the logarithm:

$$
\ln (t x+(1-t) y) \leq t \ln x+(1-t) \ln y
$$

Proposition 2.2 (Jensen's inequality). Let the Borel function $f(x)$ be downward convex and ξ a random variable with absolutely convergent first moment. Then

$$
f(\prec \xi \succ) \leq \prec f(\xi) \succ
$$

Proof. Using the definition of convex function for each $x_{o} \in \mathbb{R}$ we can find a number $g\left(x_{o}\right)$ such that

$$
f(x) \geq f\left(x_{o}\right)+g\left(x_{o}\right)\left(x-x_{o}\right)
$$

The identifications $x=\xi$ and $x_{o}=\prec \xi \succ$ yield the proof
Jensen's inequality is important for moment estimates. We have for example

$$
\prec x^{2} \succ^{2} \leq \prec x^{4} \succ
$$

and more generally
Proposition 2.3 (Lyapunov's inequality). Let $0<s<t$ then

$$
\prec|\xi|^{s} \succ^{1 / s} \leq \prec|\xi|^{t} \succ^{1 / t}
$$

Proof. Define $r=t / s$ and

$$
\eta=|\xi|^{s}
$$

Since $r>1$ the function $f(x)=x^{r}$ is convex. Jensen's inequality

$$
f(\prec \eta \succ) \leq \prec f(\eta) \succ
$$

made explicit for the present case, yields

$$
\prec \eta \succ^{r} \leq \prec \eta^{r} \succ
$$

whence the claim.
Proposition 2.4 (Hölder's inequality). Let $1<p, q<\infty$ two numbers such that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

If $\prec|\xi|^{p} \succ$ and $\prec|\eta|^{q} \succ$ are finite then

$$
\prec|\xi \eta| \succ \leq\left(\prec|\xi|^{p} \succ\right)^{1 / p}\left(\prec|\eta|^{q} \succ\right)^{1 / q}
$$

Proof. Set

$$
\tilde{\xi}=\frac{\xi}{\left(\prec|\xi|^{p} \succ\right)^{1 / p}} \quad \& \quad \tilde{\eta}=\frac{\eta}{\left(\prec|\eta|^{p} \succ\right)^{1 / p}}
$$

The concavity of the logarithm

$$
\ln (t x+(1-t) y) \geq t \ln x+(1-t) \ln y
$$

implies that for any $x, y>0$

$$
x^{\frac{1}{p}} y^{\frac{1}{q}} \leq \frac{x}{p}+\frac{y}{q}
$$

Setting

$$
x=|\tilde{\xi}| \quad \& \quad y=|\tilde{\eta}|
$$

yields

$$
\prec \mid \tilde{\tilde{\eta} \tilde{\eta} \mid \succ \leq 1 ~}
$$

which proves the claim.

3 Martingales

A nice presentation of finite dimensional martinagales is give in paragraph 11 of chapter 2 of [2].
Definition 3.1 (Martingale). Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ a sequence of real-valued random variables, such that

$$
\prec\left|\xi_{i}\right| \succ<\infty \quad \forall i
$$

and $\left\{\mathcal{F}_{k}\right\}_{k=1}^{\infty}$ a growing sequence of σ-algebras (so that $\mathcal{F}_{k} \subseteq \mathcal{F}_{k^{\prime}}$ if $k \leq k^{\prime}$), such that each of the ξ_{i+1} is $\mathcal{F}_{i^{-}}$ measurable. If

$$
\xi_{k}=\prec \xi_{j} \mid \mathcal{F}_{k} \succ \quad \text { a.s } \quad \forall j \geq k
$$

holds true we say that $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ is a (discrete) martingale.
Examples of martingales:

- Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ a sequence of i.i.d. Bernoulli random variables $\xi_{i} \stackrel{d}{=} \xi: \Omega \rightarrow\{-x, x\}$ and

$$
P_{\xi}(x)=p
$$

then

$$
S_{k}=\sum_{i=1}^{k} \xi_{i}-(2 p-1) x k
$$

is a martingale with respect to the sequence of σ-algebras with elements \mathcal{F}_{k} generated by $\left\{\xi_{i}\right\}_{i=1}^{k}$:

$$
\begin{aligned}
& \mathcal{F}_{1}=\left\{F_{x}, F_{-x}\right\} \\
& \mathcal{F}_{2}=\left\{F_{x, x}, F_{-x, x}, F_{x,-x}, F_{x, x}\right\} \\
& \mathcal{F}_{3}=\left\{F_{x, x, x}, F_{-x, x, x}, F_{x,-x, x}, F_{x, x,-x}, F_{-x,-x, x}, F_{x,-x,-x}, F_{-x, x,-x}, F_{-x,-x,-x}\right\} \\
& \text { etc. }
\end{aligned}
$$

Namely

$$
\prec S_{k+1} \mid \mathcal{F}_{k} \succ=\sum_{i=1}^{k-1} \xi_{i}-(2 p-1) x k+\prec \xi_{i} \succ=\sum_{i=1}^{k-1} \xi_{i}-(2 p-1) x(k-1)=S_{k-1}
$$

- Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ a sequence of i.i.d. Bernoulli random variables $\xi_{i} \stackrel{d}{=} \xi: \Omega \rightarrow\{-1,1\}$ and

$$
P_{\xi}(x)=p
$$

then the sequence of the

$$
\eta_{i}=\left(\frac{1-p}{p}\right)^{S_{i}}
$$

with

$$
S_{i}=\sum_{i=1}^{k} \xi_{i}
$$

is a martingale with respect to the same sequence of σ-algebras as in the previous example:

$$
\begin{aligned}
& \prec \eta_{k+1} \left\lvert\, \mathcal{F}_{k} \succ=\left(\frac{1-p}{p}\right)^{S_{k}} \prec\left(\frac{1-p}{p}\right)^{\xi_{k+1}} \succ\right. \\
& \quad=\left(\frac{1-p}{p}\right)^{S_{k}}\left[\left(\frac{1-p}{p}\right) p+\left(\frac{p}{1-p}\right)(1-p)\right]=\left(\frac{1-p}{p}\right)^{S_{k}}
\end{aligned}
$$

Definition 3.2 (Sub-Martingale and Super-Matingale). Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ a sequence of real-valued random variables, such that

$$
\prec\left|\xi_{i}\right| \succ<\infty \quad \forall i
$$

and $\left\{\mathcal{F}_{k}\right\}_{k=1}^{\infty}$ a growing sequence of σ-algebras (so that $\mathcal{F}_{k} \subseteq \mathcal{F}_{k^{\prime}}$ if $k \leq k^{\prime}$), such that each of the ξ_{i+1} is $\mathcal{F}_{i^{-}}$ measurable. We call $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ a sub-martingale if

$$
\xi_{k} \leq \prec \xi_{j} \mid \mathcal{F}_{k} \succ \quad \forall j \geq k
$$

we call $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ super-martingale if

$$
\xi_{k} \geq \prec \xi_{j} \mid \mathcal{F}_{k} \succ \quad \forall j \geq k
$$

An example of sub-maringale is provided by following proposition.
Proposition 3.1. If $\left\{\xi_{i}, \mathcal{F}_{i}\right\}_{i=1}^{\infty}$ is a martingale then $\left\{\left|\xi_{i}\right|, \mathcal{F}_{i}\right\}_{i=1}^{\infty}$ is a sub-martingale
Proof.

$$
\left|\xi_{i}\right|=\left|\prec \xi_{i+1}\right| \mathcal{F}_{i} \succ|\leq \prec| \xi_{i+1}| | \mathcal{F}_{i} \succ
$$

Theorem 3.1 (Discrete martingale inequalities). - If $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ is a submartingale, then

$$
P\left(\max _{1 \leq k \leq n} \xi_{k} \geq x\right) \leq \frac{1}{x} \prec \xi_{n} \vee 0 \succ
$$

- If $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ is a martingale and $1<p<\infty$ then

$$
\prec\left(\max _{1 \leq k \leq n}\left|\xi_{k}\right|\right)^{p} \succ \leq\left(\frac{p}{p-1}\right)^{p} \prec\left|\xi_{k}\right|^{p} \succ
$$

Proof. - The event

$$
A=\left\{\omega \in \Omega \mid \max _{1 \leq k \leq n} \xi_{k}(\omega) \geq x\right\}=\cup_{k=1}^{n}\left\{\omega \in \Omega \mid \xi_{k}(\omega) \geq x\right\}
$$

admits the decomposition into disjoint events

$$
A=\sum_{k=1}^{n} A_{k} \quad \text { with } \quad A_{k}=\cap_{l=1}^{k-1}\left\{\omega \in \Omega \mid \xi_{l}(\omega)<x\right\} \cap\left\{\omega \in \Omega \mid \xi_{k}(\omega) \geq x\right\}
$$

The decomposition can be formally proven observing that

$$
\begin{aligned}
& \left\{\omega \in \Omega \mid \xi_{1}(\omega) \geq x\right\} \cup\left\{\omega \in \Omega \mid \xi_{2}(\omega) \geq x\right\} \\
& \quad=\left\{\omega \in \Omega \mid \xi_{1}(\omega) \geq x\right\} \cup\left[\left\{\omega \in \Omega \mid \xi_{2}(\omega) \geq x, \xi_{1}(\omega) \geq x\right\} \cup\left\{\omega \in \Omega \mid \xi_{2}(\omega) \geq x, \xi_{1}(\omega)<x\right\}\right]
\end{aligned}
$$

by associativity of the set union operation can be re-written as

$$
\begin{aligned}
& \left\{\omega \in \Omega \mid \xi_{1}(\omega) \geq x\right\} \cup\left\{\omega \in \Omega \mid \xi_{2}(\omega) \geq x\right\} \\
& \quad=\left[\left\{\omega \in \Omega \mid \xi_{1}(\omega) \geq x\right\} \cup\left\{\omega \in \Omega \mid \xi_{2}(\omega) \geq x, \xi_{1}(\omega) \geq x\right\}\right] \cup\left\{\omega \in \Omega \mid \xi_{2}(\omega) \geq x, \xi_{1}(\omega)<x\right\}
\end{aligned}
$$

but

$$
\begin{aligned}
& \left\{\omega \in \Omega \mid \xi_{2}(\omega) \geq x, \xi_{1}(\omega) \geq x\right\} \subseteq\left\{\omega \in \Omega \mid \xi_{1}(\omega) \geq x\right\} \Rightarrow \\
& \quad\left\{\omega \in \Omega \mid \xi_{1}(\omega) \geq x\right\} \cup\left\{\omega \in \Omega \mid \xi_{2}(\omega) \geq x, \xi_{1}(\omega) \geq x\right\}=\left\{\omega \in \Omega \mid \xi_{1}(\omega) \geq x\right\}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \left\{\omega \in \Omega \mid \xi_{1}(\omega) \geq x\right\} \cup\left\{\omega \in \Omega \mid \xi_{2}(\omega) \geq x\right\} \\
& \quad=\left\{\omega \in \Omega \mid \xi_{1}(\omega) \geq x\right\}+\left\{\omega \in \Omega \mid \xi_{2}(\omega) \geq x, \xi_{1}(\omega)<x\right\}
\end{aligned}
$$

etc. For any of the A_{k} by Chebyshev inequality we can write

$$
P\left(A_{k}\right) \leq \prec \frac{\xi_{k}}{x} \chi_{A_{k}} \succ
$$

so that

$$
\sum_{k=1}^{n} P\left(A_{k}\right)=P(A) \leq \sum_{k=1}^{n} \prec \frac{\xi_{k}}{x} \chi_{A_{k}} \succ
$$

By definition of sub-martingale we have

$$
P(A) \leq \frac{1}{x} \sum_{k=1}^{n} \prec \prec \xi_{n}\left|\mathcal{F}_{k} \succ \chi_{A_{k}} \succ=\frac{1}{x} \sum_{k=1}^{n} \prec \prec \xi_{n} \chi_{A_{k}}\right| \mathcal{F}_{k} \succ \succ
$$

But

$$
\prec \prec \xi_{n} \chi_{A_{k}} \mid \mathcal{F}_{k} \succ \succ=\prec \xi_{n} \chi_{A_{k}} \succ
$$

so that

$$
P(A) \leq \frac{1}{x} \prec \xi_{n} \chi_{A} \succ=\frac{1}{x} \prec\left(\xi_{n} \vee 0\right) \chi_{A} \succ \leq \frac{1}{x} \prec\left(\xi_{n} \vee 0\right) \succ
$$

The first equality holds because $x>0$, the second inequality because we are adding positive terms.

- By definition

$$
P\left(\max _{1 \leq k \leq n}\left|\xi_{k}\right| \geq x\right)=1-F_{\max _{1 \leq k \leq n} \xi_{k}}(x)=\tilde{F}_{\max _{1 \leq k \leq n} \xi_{k}}(x)
$$

so that

$$
\begin{aligned}
& \prec\left(\max _{1 \leq k \leq n}\left|\xi_{k}\right|\right)^{p} \succ= \\
& \quad \int_{0}^{\infty} d F_{\max _{1 \leq k \leq n}\left|\xi_{k}\right|}(x) x^{p}=-\int_{0}^{\infty} d \tilde{F}_{\max _{1 \leq k \leq n}\left|\xi_{k}\right|}(x) x^{p}=p \int_{0}^{\infty} d x P\left(\max _{1 \leq k \leq n}\left|\xi_{k}\right| \geq x\right) x^{p-1}
\end{aligned}
$$

But since the absolute value of a (sub)-martingale is a sub-martingale

$$
P\left(\max _{1 \leq k \leq n} \xi_{k} \geq x\right) \leq \frac{1}{x} \prec\left|\xi_{n}\right| \chi_{\max _{1 \leq k \leq n} \xi_{k} \geq x} \succ
$$

we have

$$
\prec\left(\max _{1 \leq k \leq n}\left|\xi_{k}\right|\right)^{p} \succ \leq p \int d x x^{p-2} \prec\left|\xi_{n}\right| \chi_{\max _{1 \leq k \leq n}\left|\xi_{k}\right| \geq x} \succ
$$

Regarding $\left|\xi_{n}\right|$ as a function $f_{\left|\xi_{n}\right|}(\bullet)$ of $\max _{1 \leq k \leq n}\left|\xi_{k}\right|^{p}$ (they are measurable with respect to the same σ algebra), we continue by writing

$$
\prec\left(\max _{1 \leq k \leq n}\left|\xi_{k}\right|\right)^{p} \succ \leq p \int_{\Omega} d P f_{\left|\xi_{n}\right|}(x) \int_{0}^{x} d y y^{p-2}=\frac{p}{p-1} \int_{\Omega} d P f_{|\xi|_{n}}(x) x^{p-1}
$$

whence finally by Hölder's inequality

$$
\prec\left(\max _{1 \leq k \leq n}\left|\xi_{k}\right|\right)^{p} \succ \leq\left(\frac{p}{p-1}\right)\left[\int_{\Omega} d P f_{|\xi|_{n}}(x)^{p}\right]^{\frac{1}{p}}\left[\int_{\Omega} d P x^{p}\right]^{1-\frac{1}{p}}
$$

References

[1] L.C. Evans, An Introduction to Stochastic Differential Equations, lecture notes, http://math.berkeley. edu/~evans/
[2] A. N. Shiryaev, Probability, 2nd Ed. Springer (1996), http://books.google.com/

