
1 Introduction

The lecture notes complement sections H and I of chapter 2 and appendix B of [1].

2 Four inequalities

The three inequality below are commonly used in probability and the theory of stochastic processes.

Proposition 2.1 (Cauchy-Buniakovskii inequality). Let ξ and η, two Borel measurable random variables with finite
second moment. Then

≺ |ξ η| �≤
(
≺ η2 �

)1/2 (≺ ξ2 �
)1/2

Proof. By definition

≺ |η ξ| �≡
∫

Ω
dP (ω) |ξ(ω) η(ω)|

Set

η̃ =
η√
≺ η2 �

& ξ̃ =
ξ√
≺ ξ2 �

then

0 ≤≺ (|ξ̃| − |η̃|)2 � ⇒ 2 ≺ |η̃ ξ̃| �≤≺ |η̃|2 � + ≺ |ξ̃|2 �= 1

whence the claim.

Definition 2.1 (Convexity). A Borel (-measurable) function is sadid to be

• convex if for any two points x and y in its domain of definition Ω and any t ∈ [0, 1]

f(t x+ (1− t) y) ≤ t f(x) + (1− t) f(y)

• concave if for any two points x and y in its domain of definition Ω and any t ∈ [0, 1]

f(t x+ (1− t) y) ≥ t f(x) + (1− t) f(y)

An example of concave function is the logarithm:

ln(t x+ (1− t) y) ≤ t lnx+ (1− t) ln y

Proposition 2.2 (Jensen’s inequality). Let the Borel function f(x) be downward convex and ξ a random variable with
absolutely convergent first moment. Then

f(≺ ξ �) ≤≺ f(ξ) �
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Proof. Using the definition of convex function for each xo ∈ R we can find a number g(xo) such that

f(x) ≥ f (xo) + g(xo) (x− xo)

The identifications x = ξ and xo =≺ ξ � yield the proof

Jensen’s inequality is important for moment estimates. We have for example

≺ x2 �2≤≺ x4 �

and more generally

Proposition 2.3 (Lyapunov’s inequality). Let 0 < s < t then

≺ |ξ|s �1/s≤≺ |ξ|t �1/t

Proof. Define r = t/s and

η = |ξ|s

Since r > 1 the function f(x) = xr is convex. Jensen’s inequality

f(≺ η �) ≤≺ f(η) �

made explicit for the present case, yields

≺ η �r≤≺ ηr �

whence the claim.

Proposition 2.4 (Hölder’s inequality). Let 1 < p , q < ∞ two numbers such that

1

p
+

1

q
= 1

If ≺ |ξ|p � and ≺ |η|q � are finite then

≺ |ξ η| �≤ (≺ |ξ|p �)1/p(≺ |η|q �)1/q

Proof. Set

ξ̃ =
ξ

(≺ |ξ|p �)1/p
& η̃ =

η

(≺ |η|p �)1/p

The concavity of the logarithm

ln(t x+ (1− t) y) ≥ t lnx+ (1− t) ln y

implies that for any x , y > 0

x
1
p y

1
q ≤ x

p
+
y

q

Setting

x = |ξ̃| & y = |η̃|

yields

≺ |ξ̃η̃| �≤ 1

which proves the claim.
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3 Martingales

A nice presentation of finite dimensional martinagales is give in paragraph 11 of chapter 2 of [2].

Definition 3.1 (Martingale). Let {ξi}∞i=1 a sequence of real-valued random variables, such that

≺ |ξi| �< ∞ ∀i

and {Fk}∞k=1 a growing sequence of σ-algebras (so that Fk ⊆ Fk′ if k ≤ k
′
), such that each of the ξi+1 is Fi-

measurable. If

ξk =≺ ξj |Fk � a.s ∀ j ≥ k

holds true we say that {ξi}∞i=1 is a (discrete) martingale.

Examples of martingales:

• Let {ξi}∞i=1 a sequence of i.i.d. Bernoulli random variables ξi
d
= ξ : Ω→ {−x, x} and

Pξ(x) = p

then

Sk =
k∑
i=1

ξi − (2 p− 1)x k

is a martingale with respect to the sequence of σ-algebras with elements Fk generated by {ξi}ki=1 :

F1 = {Fx, F−x}
F2 = {Fx,x, F−x,x, Fx,−x, Fx,x}
F3 = {Fx,x,x, F−x,x,x, Fx,−x,x, Fx,x,−x, F−x,−x,x, Fx,−x,−x, F−x,x,−x, F−x,−x,−x}
etc.

Namely

≺ Sk+1|Fk �=

k−1∑
i=1

ξi − (2 p− 1)x k+ ≺ ξi �=

k−1∑
i=1

ξi − (2 p− 1)x (k − 1) = Sk−1

• Let {ξi}∞i=1 a sequence of i.i.d. Bernoulli random variables ξi
d
= ξ : Ω→ {−1, 1} and

Pξ(x) = p

then the sequence of the

ηi =

(
1− p
p

)Si

with

Si =
k∑
i=1

ξi
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is a martingale with respect to the same sequence of σ-algebras as in the previous example:

≺ ηk+1|Fk �=

(
1− p
p

)Sk

≺
(

1− p
p

)ξk+1

�

=

(
1− p
p

)Sk
[(

1− p
p

)
p+

(
p

1− p

)
(1− p)

]
=

(
1− p
p

)Sk

Definition 3.2 (Sub-Martingale and Super-Matingale). Let {ξi}∞i=1 a sequence of real-valued random variables, such
that

≺ |ξi| �< ∞ ∀i

and {Fk}∞k=1 a growing sequence of σ-algebras (so that Fk ⊆ Fk′ if k ≤ k
′
), such that each of the ξi+1 is Fi-

measurable. We call {ξi}∞i=1 a sub-martingale if

ξk ≤≺ ξj |Fk � ∀ j ≥ k

we call {ξi}∞i=1 super-martingale if

ξk ≥≺ ξj |Fk � ∀ j ≥ k

An example of sub-maringale is provided by following proposition.

Proposition 3.1. If {ξi,Fi}∞i=1 is a martingale then {|ξi|,Fi}∞i=1 is a sub-martingale

Proof.

|ξi| = | ≺ ξi+1|Fi � | ≤≺ |ξi+1| |Fi �

Theorem 3.1 (Discrete martingale inequalities). • If {ξi}∞i=1 is a submartingale, then

P ( max
1≤k≤n

ξk ≥ x) ≤ 1

x
≺ ξn ∨ 0 �

• If {ξi}∞i=1 is a martingale and 1 < p < ∞ then

≺
(

max
1≤k≤n

|ξk|
)p
�≤

(
p

p− 1

)p
≺ |ξk|p �

Proof. • The event

A =

{
ω ∈ Ω| max

1≤k≤n
ξk(ω) ≥ x

}
= ∪nk=1 {ω ∈ Ω|ξk(ω) ≥ x}

admits the decomposition into disjoint events

A =

n∑
k=1

Ak with Ak = ∩k−1
l=1 {ω ∈ Ω|ξl(ω) < x} ∩ {ω ∈ Ω|ξk(ω) ≥ x}

4



The decomposition can be formally proven observing that

{ω ∈ Ω|ξ1(ω) ≥ x} ∪ {ω ∈ Ω|ξ2(ω) ≥ x}
= {ω ∈ Ω|ξ1(ω) ≥ x} ∪ [{ω ∈ Ω|ξ2(ω) ≥ x, ξ1(ω) ≥ x} ∪ {ω ∈ Ω|ξ2(ω) ≥ x, ξ1(ω) < x}]

by associativity of the set union operation can be re-written as

{ω ∈ Ω|ξ1(ω) ≥ x} ∪ {ω ∈ Ω|ξ2(ω) ≥ x}
= [{ω ∈ Ω|ξ1(ω) ≥ x} ∪ {ω ∈ Ω|ξ2(ω) ≥ x, ξ1(ω) ≥ x}] ∪ {ω ∈ Ω|ξ2(ω) ≥ x, ξ1(ω) < x}

but

{ω ∈ Ω|ξ2(ω) ≥ x, ξ1(ω) ≥ x} ⊆ {ω ∈ Ω|ξ1(ω) ≥ x} ⇒
{ω ∈ Ω|ξ1(ω) ≥ x} ∪ {ω ∈ Ω|ξ2(ω) ≥ x, ξ1(ω) ≥ x} = {ω ∈ Ω|ξ1(ω) ≥ x}

so that

{ω ∈ Ω|ξ1(ω) ≥ x} ∪ {ω ∈ Ω|ξ2(ω) ≥ x}
= {ω ∈ Ω|ξ1(ω) ≥ x}+ {ω ∈ Ω|ξ2(ω) ≥ x, ξ1(ω) < x}

etc. For any of the Ak by Chebyshev inequality we can write

P (Ak) ≤≺
ξk
x
χAk
�

so that
n∑
k=1

P (Ak) = P (A) ≤
n∑
k=1

≺ ξk
x
χAk
�

By definition of sub-martingale we have

P (A) ≤ 1

x

n∑
k=1

≺≺ ξn|Fk � χAk
�=

1

x

n∑
k=1

≺≺ ξnχAk
|Fk ��

But

≺≺ ξnχAk
|Fk ��=≺ ξnχAk

�

so that

P (A) ≤ 1

x
≺ ξnχA �=

1

x
≺ (ξn ∨ 0)χA �≤

1

x
≺ (ξn ∨ 0) �

The first equality holds because x > 0, the second inequality because we are adding positive terms.

• By definition

P ( max
1≤k≤n

|ξk| ≥ x) = 1− Fmax1≤k≤n ξk(x) = F̃max1≤k≤n ξk(x)

so that

≺
(

max
1≤k≤n

|ξk|
)p
�=∫ ∞

0
dFmax1≤k≤n |ξk|(x)xp = −

∫ ∞
0

dF̃max1≤k≤n |ξk|(x)xp = p

∫ ∞
0

dxP ( max
1≤k≤n

|ξk| ≥ x)xp−1
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But since the absolute value of a (sub)-martingale is a sub-martingale

P ( max
1≤k≤n

ξk ≥ x) ≤ 1

x
≺ |ξn|χmax1≤k≤n ξk≥x �

we have

≺
(

max
1≤k≤n

|ξk|
)p
�≤ p

∫
dxxp−2 ≺ |ξn|χmax1≤k≤n |ξk|≥x �

Regarding |ξn| as a function f|ξn|(•) of max1≤k≤n |ξk|p (they are measurable with respect to the same σ-
algebra), we continue by writing

≺
(

max
1≤k≤n

|ξk|
)p
�≤ p

∫
Ω
dP f|ξn|(x)

∫ x

0
dy yp−2 =

p

p− 1

∫
Ω
dP f|ξ|n(x)xp−1

whence finally by Hölder’s inequality

≺
(

max
1≤k≤n

|ξk|
)p
�≤

(
p

p− 1

)[∫
Ω
dP f|ξ|n(x)p

] 1
p
[∫

Ω
dP xp

]1− 1
p
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