1 Introduction

The lecture notes complement sections H and I of chapter 2 and appendix B of [1].

2 Four inequalities

The three inequality below are commonly used in probability and the theory of stochastic processes.

Proposition 2.1 ( ). Let & and n, two Borel measurable random variables with finite
second moment. Then

<len =< (=2 =) P (=2 =)'

Proof. By definition
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then
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whence the claim. O

Definition 2.1 (Convexity). A Borel (-measurable) function is sadid to be

e convex if for any two points x and y in its domain of definition Q2 and any t € |0, 1]

flz+(1—1t)y) <tflz)+(1-1)f(y)

e concave if for any two points x and y in its domain of definition Q2 and any t € [0, 1]

flz+(1—1t)y) > tfl@)+(1—1t)f(y)

An example of concave function is the logarithm:
In(te+(1—-t)y) <tlhz+(1—1t)lny

Proposition 2.2 (Jensen’s inequality). Let the Borel function f(x) be downward convex and & a random variable with
absolutely convergent first moment. Then

f(=6-) << f(&) >



Proof. Using the definition of convex function for each z, € R we can find a number g(x,) such that
f(x) = f(@o) + g(xo) (& — o)
The identifications = £ and x, =< £ > yield the proof
Jensen’s inequality is important for moment estimates. We have for example

< z? <<t -
and more generally
Proposition 2.3 (Lyapunov’s inequality). Let 0 < s < t then

< g =M< < el -
Proof. Define r = t/s and
n=I[&P
Since r > 1 the function f(x) = 2" is convex. Jensen’s inequality
f(=n=) << f(n) >

made explicit for the present case, yields

<n>="<=<n" =
whence the claim.

Proposition 2.4 (Holder’s inequality). Let 1 < p,q < oo two numbers such that
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If < |&|P > and < |n|? = are finite then
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The concavity of the logarithm

In(tz+(1—t)y) > tlnz+ (1 —1¢) Iny

implies that forany z,y > 0
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Setting
z = €] & y = Il
yields
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which proves the claim.



3 Martingales

A nice presentation of finite dimensional martinagales is give in paragraph 11 of chapter 2 of [2].

Definition 3.1 (Martingale). Let {§;};° a sequence of real-valued random variables, such that
< 1&| =< o0 Vi

and {Fi,};—, a growing sequence of o-algebras (so that Fj, C Fp if k < k'), such that each of the &1 is Fi-
measurable. If

& =< &|Fk > a.s Vi>k
holds true we say that {&;};, is a (discrete) martingale.
Examples of martingales:
e Let {&}:2, asequence of i.i.d. Bernoulli random variables &; 4 £:Q—{—z,z}and
Pe(z) =p

then
k
Sk :Z§i—(2p—1)xk
i=1

is a martingale with respect to the sequence of o-algebras with elements F generated by {&}f:l :
‘Fl == {FI7 F—:l?}

FQ - {Fx,ra F—m,my Fa:,—ma Fx,r}
JT3 = {Fw,x,ma F—x,ac,ma Fx,—:p,ma Fx,m,—:m F—m,—x,ma Fx,—x,—:m F—x,m,—za F—m,—m,—x}

etc.
Namely
k—1 k—1
< Sl Fr ==Y G- Qp—Dak+ <& ==> &—2p—1Da(k—1) =8
i=1 i=1

e Let {&}:2, asequence of i.i.d. Bernoulli random variables &; 4 £:Q—{-1,1} and

Pe(z) =p
then the sequence of the
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p
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is a martingale with respect to the same sequence of o-algebras as in the previous example:
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Definition 3.2 (Sub-Martingale and Super-Matingale). Let {&;};°, a sequence of real-valued random variables, such
that

< |&] =< oo Vi

and {Fi.} 1~ a growing sequence of -algebras (so that F, C Fy if k < k'), such that each of the &1 is Fi-
measurable. We call {&;};°, a sub-martingale if

§r << & Fk - Vi>k
we call {&;};2 | super-martingale if
k2= &|Fk - Vji>k
An example of sub-maringale is provided by following proposition.
Proposition 3.1. If {&;, Fi};2, is a martingale then {|&;|, F;};2, is a sub-martingale

Proof.

&l = | < &1l Fi = | << &1l | Fi =

Theorem 3.1 (Discrete martingale inequalities). o If{&}:2, is a submartingale, then

1
> < —
P(1I§nl?§Xn§k >zx) < . <& V0 -

o If{&}.2, isamartingale and 1 < p < oo then

p P p
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Proof. e The event

A= {w € Q| 1I<nl?<xn§k(w) > x} =Up 1 {w € Q¢ (w) > =}

admits the decomposition into disjoint events

A=A with Ap =N {w € Qg (w) < 2} N {w € Q& (w) > z}
k=1



The decomposition can be formally proven observing that

fw € Qléu(w) > 2} U{w € Qléa(w) > 2}
— {w € Q&) = 7} U l{w € Q&) = 7,6 (W) = o} U{w € Q&s(w) = o, & w) < o}]

by associativity of the set union operation can be re-written as

{we QG (w) 2} U{w € Q& (w) > o}
= [{w € Q& (w) =2 2} U{w € Q& (w) = 7,6(w) = 2} U{w € Q& (w) > 2, &1 (w) < o}

but

{we () > 2,6(w) 2 2} C{w e Q& (w) > o} =
{we Q6 (w) = 2} U{w € Ql&a(w) = 7,6(w) > 2} = {w € Q6 (w) > o}

so that

fw e Qléu(w) > 2} U{w € Qléa(w) > 2}
— {w € Q&) > 2} + {w € Y&a(w) > 2,6 (W) < o}

etc. For any of the A by Chebyshev inequality we can write

so that

By definition of sub-martingale we have

1 & 1 @
P(4) < — D <=l Fr - x4y, = ;Z <= Enxa, | Fr ==
k=1 k=1
But
<= & XA [Tk = === Enxa, -
so that

1 1 1
P(A) < ; < &nxa == ; = (anO)XA =< ; < (gn\/O) -
The first equality holds because x > 0, the second inequality because we are adding positive terms.

By definition

P(lrél]?é{ |§k| Z .',U) = 1 - Fmaxlgkgn fk (.'Ij) = Fmaxlgkgn gk (x)
SRSN

so that

p
=< (ggggn !&c) =

o0 o0 o0
/ dFmax1<k<n |£k‘ (x) xp = - / an’laX1<k<n |£k‘ (:I/') xp = p/ dx P( max |§k| Z .',U) xpil
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But since the absolute value of a (sub)-martingale is a sub-martingale

1
P(lglkagxnék > SL‘) < E < ‘fn‘ XmaxlgkgnﬁkZz -

we have

p
p—2
< <1Ig§§n|€kl> =< p/dm = [n] Xmaxy<ren Il =

Regarding |¢,| as a function f |(e) of max;<j<n [{x[P (they are measurable with respect to the same o-
algebra), we continue by writing

p x
-2 _ P -1
=< <1r§,3§xn|£k!> - < p/Qde|gn(w)/0 dyy? —]H/defm(w):vp

whence finally by Holder’s inequality

1

) <1r£’?§"’£k’)p = <pfl> [/Qdem(:v)p]; [/deznp} o
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