
1 Introduction

The lecture notes cover and integrate section G of chapter 2 of [1].

2 The main results of classical probability theory

The two theorems below give a mathematical model to describe the statistical properties of the outcomes of repeated
identical experiments. The first theorem gives information about the average outcome, the second about the typical
size of the fluctuations around the average.

Theorem 2.1 (The strong law of large numbers). Let {ξi}
n
i=1 a sequence of independent identically distributed inte-

grable random variables defined over the same probability space. Then if ξi
d
= ξ we have

P

(
lim
n↑∞

∑n
i=1 ξi
n

=≺ ξ �
)

= 1

Proof. see e.g. [1]

Theorem 2.2 (The central limit theorem). Let {ξi}ni=1 a sequence of independent identically distributed real-valued

integrable random variables defined over the same probability space. Assume ξi
d
= ξ and

≺ ξ �= y

≺ (ξ− ≺ ξ �)2 �= σ2 > 0

Set

Sn =
1

n

n∑
i=1

ξi

Then for all −∞ < a < b <∞ the limit holds

lim
n↑∞

P

(
a <

Sn − y
≺ (Sn − y)2 �1/2

< b

)
=

∫ b

a
dx g0 1(x) (2.1)

where

g0 1(x) =
e−

x2

2

√
2π

Sketch of the proof. Consider the characteristic function

≺ eı t
Sn−y

≺(Sn−y)2� �=≺ eı t
∑n
i=1 ξi−n y√

nσ �=
n∏
i=1

≺ eı t
ξi−y√
nσ �=

[∫
R
dx e

ı t x−y√
nσ pξ1(x)

]n
As n increases to infinity one expects the characteristic function for ”small values” of q to be well approximated by a
Taylor expansion of the exponential

≺ eı t
Sn−n y√

nσ �=

[
1− t2

2n

∫
R
dx

(x− y)2

σ2
pξ1(x) +O(

1

n3/2
)

]n
n↑∞→ e−

t2

2

Thus the small wave number behavior of the characteristic function is approximated by the characteristic function of
the Gaussian distribution.

1



2.1 Some observations on the central limit theorem and its generalizations

The central limit theorem is often invoked in applications as it describes universal properties of a physical system.
This means properties which depend only on a coarse characterization of the phenomena (e.g. finiteness of the fourth
moment) rather than on its fine details.

2.1.1 The role of the Fourier transform

In the sketch of the proof we made use of the relation between the PDF of the a random variable and its characteristic
function. Such relation becomes particularly useful when dealing with sums of random variables. Namely let

ζ = ξ1 + ξ2

then

pζ(x) =

∫
R
dy1dy2 δ(x− y1 − y2) pξ1(y1) pξ2(y2) =

∫
R
dy pξ1(x− y) pξ2(y)

From the general properties of the Fourier transform, we know that

pζ(x) =

∫
R

dt

2π
e−ı t xp̌ξ1(t)p̌ξ2(t)

Thus dealing with characteristic functions in the proof of limit theorems it is helpful because it replaces convolutions
with products of Fourier transforms.

2.1.2 Domain of validity

It is important to understand that the central limit theorem is a statement concerning the bulk of the asymptotic
distribution of

ζn :=
Sn − y

≺ (Sn − y)2 �1/2
n � 1

This means that we can use the predicted Gaussian distribution only to evaluate the first moments of ζn but not to
sample the behavior of the tails of the distribution. The situation is illustrated by the following example.

• Let {ξi}∞i=1 a sequence of i.i.d. positive definite random variables with density

pξ(x) =
e−

x
x̄

x̄
ξi

d
= ξ ∀ i

From this sequence we can construct the products

ηn =

n∏
i=1

ξi = x̄ e
∑n
i=1 ψi & ψ

d
= ψi

d
:= ln

ξ

x̄

The change of variables x = x̄ y then yields

m :=≺ ψ �=

∫ ∞
0

dy ln y pξ(y) < ∞

σ2 :=≺ (ψ −m)2 �=

∫ ∞
0

dy ln2 y pξ(y)−m2 < ∞
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so we can apply the central limit theorem to

Sn[ψ] :=

∑n
i=1 ψi
n

≡
∑n

i=1 ln ξi
x̄

n

and write for the density of this latter variable

pSn[ψ](x)
n↑∞→ e−

n (x−m)2

2σ2√
2π σ2

n

(2.2)

We can use (2.2) to tentatively compute moments of arbitrary order of

ηn = x̄n enSn[ψ]

using

≺ ηkn �
n↑∞
' x̄k n

∫ ∞
−∞

dx enk x
e−

n (x−m)2

2σ2√
2π σ2

n

= x̄nke
n
(
km+ k2 σ2

2

)
(2.3)

The same quantity can be, however, computed directly from its very definition:

≺ ηkn �=
n∏
i=1

≺ ξki �=≺ ξk �n= en ln≺ξk� = en (k ln x̄+ln Γ(k+1)) (2.4)

From Stirling formula we know that

ln Γ(k + 1)
k↑∞→ k (ln k − 1) + o(k)

which, for k sufficiently large, disproves (2.3). On the other hand, for small k we have

ln ≺ ξk �= ln ≺ 1 + k ln ξ +
k2

2
ln2 ξ + · · · �= km+

σ2 k2

2
+ . . .

which coincides with the central limit prediction.

• An alternative way to phrase the content of the above example is the following: when computing expectation
values of random variables which take large values with small probability contributions from such values cannot
be neglected. The product of something big by something small can still be big. A systematic way to tackle the
problem is provided by the theory of large deviations (see e.g. [2]).

In applications, a qualitative estimate of the bulk of the asymptotic distribution is provided by the variance of ζn

Sn− ≺ ξ �∼ O
(
σ√
n

)
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