1 Introduction

These notes shortly recall some basic concepts in classical probability. The main reference are sections from A to F of chapter two of [1] integrated with some extra examples, to be discussed in the exercise session.

2 Measure theoretic definitions

Let Ω a non-empty set.
Definition 2.1 (σ-algebra). A σ-algebra is a collection \mathcal{F} of subsets of Ω with these properties

1. $\emptyset, \Omega \in \mathcal{F}$.
2. if $F \in \Omega$ then $F^{c} \in \Omega$ for $F^{c}:=\Omega \backslash F$ the complement of F.
3. if $\left\{F_{k}\right\}_{k=1}^{\infty} \in \Omega$ then

$$
\cap_{k=1}^{\infty} F_{k}, \cup_{k=1}^{\infty} F_{k} \in \Omega
$$

Definition 2.2 (Probability measure). Let \mathcal{F} be a σ-algebra of subsets of Ω. We call

$$
P: \mathcal{F} \rightarrow[0,1]
$$

a probability measure provided:

1. $P(\emptyset)=0, P(\Omega)=1$
2. if $\left\{F_{k}\right\}_{k=1}^{\infty}$ then

$$
P\left(\cup_{k=1}^{\infty} F_{k}\right) \leq \sum_{k=1}^{\infty} P\left(F_{k}\right)
$$

3. if $\left\{F_{k}\right\}_{k=1}^{\infty}$ are disjoint sets

$$
\begin{equation*}
P\left(\cup_{k=1}^{\infty} F_{k}\right)=\sum_{k=1}^{\infty} P\left(F_{k}\right) \tag{2.1}
\end{equation*}
$$

It follows that if $F_{1}, F_{2} \in \mathcal{F}$

$$
F_{1} \subset F_{2} \quad \Rightarrow \quad P\left(F_{1}\right) \leq P\left(F_{2}\right)
$$

Definition 2.3 (Borel σ-algebra). The smallest σ-algebra containing all the open subsets of \mathbb{R}^{d} is called the Borel σ-algebra, denoted by \mathcal{B}

The Borel subsets of \mathbb{R}^{d} i.e. the content of \mathcal{B} may be thought as the collection of all the well-behaved subsets of \mathbb{R}^{d} for which Lebesgue measure theory applies.

3 Probability Space

Definition 3.1 (Probability space). A triple

$$
(\Omega, \mathcal{F}, P)
$$

is called a probability space provided

1. Ω is any set
2. \mathcal{F} is a σ-algebra of subsets of Ω
3. P is a probability measure on \mathcal{F}

- Points $\omega \in \Omega$ are sample (outcome) points.
- A set $F \in \mathcal{F}$ is called an event.
- $P(F)$ is the probability of the event F.
- A property which holds true but for events of probability zero is said to hold almost surely (usually abbreviated "a.s.").

Example 3.1 (Single unbiased coin tossing). :

- outcomes: head, tail
- $\Omega=\{$ head,tail $\}$.
- σ-algebra \mathcal{F} : it comprises $|\mathcal{F}|=2^{|\Omega|}=4$ events
$1 \mathrm{~T}=$ tail
$2 \mathrm{H}=$ head
$3 \emptyset=$ neither head nor tail
$4 T \vee H=$ head or tail
- Probability measure:

$$
\begin{equation*}
P(T)=P(H)=\frac{1}{2} \quad \& \quad P(\emptyset)=0 \quad \& \quad P(T \vee H)=1 \tag{3.1}
\end{equation*}
$$

Example 3.2 (Uniform distribution). :

- $\Omega=[0,1]$.
- \mathcal{F} : the σ-algebra of all Borel subsets of $[0,1]$.
- P : the Lebesgue measure on $[0,1]$. (Note: as $0 \cup 1$ has zero measure $[0,1] \sim(0,1)$.)

Definition 3.2 (Probability density on \mathbb{R}^{d}). Let p be a non-negative, integrable function, such that

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} d^{d} x p(\boldsymbol{x})=1 \tag{3.2}
\end{equation*}
$$

then to each $B \in \mathcal{B}$ (Borel σ-algebra) is possible to associate a probability

$$
\begin{equation*}
P(B)=\int_{B} d^{d} x p(\boldsymbol{x}) \tag{3.3}
\end{equation*}
$$

so that $\left(\mathbb{R}^{d}, \mathcal{B}, P\right)$ is a probability space. The function p is called the density of the probability P.
Example 3.3 (Gaussian distribution). The function

$$
\begin{align*}
& g_{\bar{x} \sigma}: \mathbb{R} \rightarrow \mathbb{R}_{+} \\
& g_{\bar{x} \sigma}(x)=\frac{e^{-\frac{(x-\bar{x})^{2}}{2 \sigma^{2}}}}{\sqrt{2 \pi} \sigma^{2}} \tag{3.4}
\end{align*}
$$

is a probability density on $\left(\mathbb{R}^{d}, \mathcal{B}, P\right)$.
Example 3.4 (Dirac mass and Dirac δ-function). Let \boldsymbol{y} be the coordinate of a point in \boldsymbol{R}^{d}. Define for any $B \in \mathcal{B}$

$$
P_{\boldsymbol{y}}(B)= \begin{cases}1 & \text { if } \boldsymbol{y} \in B \tag{3.5}\\ 0 & \text { if } \boldsymbol{y} \notin B\end{cases}
$$

then $\left(\mathbb{R}^{d}, \mathcal{B}, P\right)$ is a probability space. The probability P is the Dirac mass concentrated at \boldsymbol{x}. The "density" associated to P is the Dirac δ-function (distribution). A possible definition of the Dirac δ-function on \mathbb{R}

$$
\delta(x-y): \stackrel{w}{=} \lim _{\sigma \downarrow 0} g_{y \sigma}(x)
$$

The definition must be understood in weak sense. Namely, let

$$
f: \mathbb{R} \rightarrow \mathbb{R}
$$

a bounded Lebesgue measurable test function then

$$
\int_{\mathbb{R}} d x \delta(x-y) f(x)=\lim _{\sigma \downarrow 0} \int_{\mathbb{R}} d x g_{y \sigma}(x) f(x)=\lim _{\sigma \downarrow 0} \int_{\mathbb{R}} d x g_{01}(x) f(\sigma x+y)=f(y)
$$

The above chain of equalities show that the Dirac δ is not a density with respect to the standard Lebesgue measure as it has support on a set of zero Lebesgue measure. A consequence is that indefinite integral

$$
H_{y}(x)=\int_{-\infty}^{x} d z \delta(z-y)=\frac{1+\operatorname{sgn}(x-y)}{2}
$$

yields

$$
H_{y}(y)= \begin{cases}1 & x>y \\ * & x=y \\ 0 & x<y\end{cases}
$$

meaning that the result is not defined on the zero measure set $x=y$. The result may be interpreted in weak sense as the definition of the Heaviside distribution.

Properties of the Dirac δ distribution

In weak sense (i.e. applied to suitable test functions), the Dirac δ over \mathbb{R} satisfies
i localization of the integral:

$$
\int_{y-\varepsilon}^{y+\varepsilon} d x \delta(x-y) f(x)=f(y)
$$

ii derivative of the Dirac δ :

$$
\int_{y-\varepsilon}^{y+\varepsilon} d x \frac{d}{d x} \delta(x-y) f(x)=-\frac{d f}{d y}(y) \quad \Rightarrow \quad f(x) \frac{d \delta}{d x}(x-y) \stackrel{w}{=}-\frac{d f}{d x}(x) \delta(x-y)
$$

iii for $h(x)$ having a simple zero $x=x_{\star}$ and otherwise non-vanishing and smooth in $\left(x_{\star}-\varepsilon, x_{\star}+\varepsilon\right)$ with $\varepsilon>0$

$$
\int_{x_{\star}-\varepsilon}^{x_{\star}+\varepsilon} d x f(x) \delta(h(x))=\frac{f\left(x_{\star}\right)}{\left|\frac{d h}{d x}\left(x_{\star}\right)\right|} \quad \Rightarrow \quad \delta(h(x)) \stackrel{w}{=} \frac{\delta\left(x-x_{\star}\right)}{\left|\frac{d h}{d x}\left(x_{\star}\right)\right|}
$$

iv The d-dimensional Dirac- δ

$$
\begin{equation*}
\delta^{(d)}(\boldsymbol{x}-\boldsymbol{y})=\prod_{i=1}^{d} \delta\left(x_{i}-y_{i}\right) \tag{3.6}
\end{equation*}
$$

maybe defined by repeating the limiting procedure on each variable e.g.

$$
\begin{equation*}
\delta^{(d)}(\boldsymbol{x}-\boldsymbol{y}) \stackrel{w}{=} \prod_{i=1}^{d} \lim _{\sigma \downarrow 0} g_{y_{i} \sigma}\left(x_{i}\right) \tag{3.7}
\end{equation*}
$$

v Let

$$
\begin{equation*}
h: \mathbb{R}^{d} \rightarrow \mathbb{R} \tag{3.8}
\end{equation*}
$$

such that

$$
\begin{equation*}
h(\boldsymbol{x})=0 \tag{3.9}
\end{equation*}
$$

describes a smooth $d-1$-dimensional hyper-surface Σ embedded in \mathbb{R}^{d}, then

$$
\begin{equation*}
\int_{\mathbb{R}^{d}} d^{d} x \delta(h(\boldsymbol{x}))=\int d \Sigma \frac{f(\boldsymbol{x})}{\|\nabla h\|} \tag{3.10}
\end{equation*}
$$

4 Random variables

Definition 4.1 (Random variable). Let (Ω, \mathcal{F}, P) be a probability space. A mapping

$$
\xi: \Omega \rightarrow \mathbb{R}^{d}
$$

is called an d-dimensional random variable if for each $B \in \mathcal{B}$ one has

$$
\xi^{-1}(B) \in \mathcal{F}
$$

i.e. if $\boldsymbol{\xi}$ is \mathcal{F}-measurable.

The definition associates to each event a Borel subset.
Example 4.1 (Indicator function). Let $F \in \mathcal{F}$. The indicator function of F is

$$
\chi_{F}(\omega)= \begin{cases}1 & \text { if } \omega \in F \\ 0 & \text { if } \omega \notin F\end{cases}
$$

Example 4.2 (Simple function). Let $\left\{F_{i}\right\}_{i=1}^{m} \in \mathcal{F}$ are disjoint (i.e. $F_{i} \cap F_{j}=\emptyset$) and form a partition of Ω (i.e. $\cup_{i=1}^{m} F_{i}=\Omega$) and $\left\{x_{i}\right\}_{i=1}^{m} \in \mathbb{R}$ then

$$
\xi=\sum_{i=1}^{m} x_{i} \chi_{F_{i}}(\omega)
$$

is a random variable, called a simple function.
Lemma 4.1. Let

$$
\boldsymbol{\xi}(\omega): \Omega \rightarrow \mathbb{R}^{d}
$$

be a random variable. Then

$$
\mathcal{F}(\boldsymbol{\xi})=\left\{\boldsymbol{\xi}^{-1}(B) \mid B \in \mathcal{B}\right\}
$$

is a σ-algebra, called the σ-algebra generated by $\boldsymbol{\xi}$. This is the smallest sub σ-algebra of \mathcal{F} with respect to which $\boldsymbol{\xi}$ is measurable.

Proof. It suffices to verify that $\mathcal{F}(\boldsymbol{\xi})$ is a σ-algebra.
Remark 4.1 (Meaning of measurability). : The σ-algebra $\mathcal{F}(\xi)$ encodes all the information described by the random variable $\boldsymbol{\xi}$. This means that if $\boldsymbol{\zeta}$ is a second random variable, the statement

- $\boldsymbol{\zeta}=\boldsymbol{f}(\boldsymbol{\xi})$ for some mapping \boldsymbol{f} implies that $\boldsymbol{\zeta}$ is $\mathcal{F}(\boldsymbol{\xi})$-measurable.
- $\boldsymbol{\zeta}$ is $\mathcal{F}(\boldsymbol{\xi})$-measurable, implies that there exists a mapping \boldsymbol{f} such that $\boldsymbol{\zeta}=\boldsymbol{f}(\boldsymbol{\xi})$.

5 Expectation values

Expectation values of generic random variables are defined following the same steps taken to define the Lebesgue integral of measurable functions. Let (Ω, \mathcal{F}, P) a probability space and ξ a simple 1-dimensional random variable

$$
\xi=\sum_{i=1}^{n} x_{i} \chi_{F_{i}}
$$

Definition 5.1 (Expectation value (integral) of a simple random variable).

$$
\int_{\Omega} d P \xi=\sum_{i=1}^{n} x_{i} P\left(F_{i}\right)
$$

Definition 5.2 (Expectation value (integral) of a non-negative random variable η). For

$$
\eta: \Omega \rightarrow \mathbb{R}_{+}
$$

we define

$$
\prec \eta \succ \equiv \int_{\Omega} d P \eta:=\sup _{\substack{\xi \leq \eta \\ \xi=\operatorname{simple}}} \int_{\Omega} d P \xi
$$

Definition 5.3 (Expectation value a random variable η). For

$$
\eta: \Omega \rightarrow \mathbb{R}
$$

we define

$$
\eta_{+}:=\max \{\eta, 0\} \quad \& \quad \eta_{-}:=\max \{-\eta, 0\}
$$

If

$$
\min \left\{\prec \eta_{+} \succ, \prec \eta_{-} \succ\right\}<\infty
$$

we define the expectation variable of

$$
\eta \equiv \eta_{+}-\eta_{-}
$$

as

$$
\int_{\Omega} d P \eta:=\int_{\Omega} d P \eta_{+}-\int_{\Omega} d P \eta_{-}
$$

With these definitions all the standard rules of Lebesgue integrals apply to expectation values.
Proposition 5.1 (Chebyshev's inequality). If $\boldsymbol{\xi}$ is a random variable and $1 \leq n<\infty$, then

$$
P(\|\xi\| \geq x) \leq \frac{1}{x^{n}} \prec\|\xi\|^{n} \succ \quad \forall n
$$

Proof.

$$
\prec\|\xi\|^{n} \succ=\int_{\Omega} d P\|\xi\|^{n} \geq x^{n} \int_{\|\xi\| \geq x} d P\|\xi\|^{n} \equiv x^{n} P(\|\xi\| \geq x)
$$

6 Moments of a random variable

Definition 6.1 (Distribution function). The distribution function of a random variable $\boldsymbol{\xi}: \Omega \rightarrow \mathbb{R}^{d}$ is the function

$$
\tilde{P}_{\xi}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}
$$

such that

$$
\tilde{P}_{\boldsymbol{\xi}}(\boldsymbol{x})=P_{\boldsymbol{\xi}}\left(\xi_{1} \leq x_{1}, \ldots, \xi_{d} \leq x_{d}\right)
$$

Definition 6.2 (PDF of a random variable). Let $\boldsymbol{\xi}: \Omega \rightarrow \mathbb{R}^{d}$ be a random variable and $P_{\boldsymbol{\xi}}$ its distribution function. If there exists a non-negative, integrable function

$$
p: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}
$$

such that

$$
\tilde{P}_{\boldsymbol{\xi}}(\boldsymbol{x})=\prod_{i=1}^{d} \int_{-\infty}^{x_{i}} d y_{i} p_{\boldsymbol{\xi}}(\boldsymbol{y})
$$

then $p_{\boldsymbol{\xi}}$ specifies the probability density function of $\boldsymbol{\xi}(P D F)$.

Lemma 6.1. Let

$$
\xi: \Omega \rightarrow \mathbb{R}^{d}
$$

be a random variable, with statistics described by PDF p_{ξ}. Suppose

$$
f: \mathbb{R}^{d} \rightarrow \mathbb{R}
$$

and

$$
y=f(\boldsymbol{x})
$$

Then

$$
\prec y \succ \equiv E\{y\}=\int d^{d} x p_{\boldsymbol{\xi}}(\boldsymbol{x}) f(\boldsymbol{x})
$$

In particular

$$
\prec \xi^{i} \succ=\int d^{d} x p_{\boldsymbol{\xi}}(\boldsymbol{x}) x^{i} \quad \text { average or mean value }
$$

and

$$
\prec\left(\xi^{i}-\prec \xi^{i} \succ\right)^{2} \succ=\int d^{d} x p_{\boldsymbol{\xi}}(\boldsymbol{x}) x^{i^{2}}-\prec \xi^{i} \succ^{2} \quad \text { variance }
$$

Proof. Suppose first f is a simple function on \mathbb{R}^{d}. Then

$$
\prec f(\boldsymbol{\xi}) \succ=\sum_{i=1}^{n} f_{i} \int \chi_{B_{i}}(\boldsymbol{\xi}) d P=\sum_{i=1}^{n} f_{i} P\left(B_{i}\right)=\sum_{i=1}^{n} f_{i} \int_{B_{i}} p_{\boldsymbol{\xi}}(\boldsymbol{x}) f(\boldsymbol{x})
$$

Consequently the formula holds for all simple functions g and, by approximation, it holds therefore for general functions g.

Definition 6.3 (Moments of a random variable). Let

$$
\xi: \Omega \rightarrow \mathbb{R}
$$

we call the expectation value of the n-th power of ξ

$$
\prec \xi^{n} \succ=\int_{\Omega} d P \xi^{n}
$$

the moment of order n of ξ.
The lower order moments are those most recurrent in applications and as such are given special names such as the average and the variance.
Example 6.1. (Average and variance of a Gaussian variable)

- Average:

$$
\prec \xi \succ=\int_{\mathbb{R}} d x x g_{\bar{x} \sigma}(x)=\int_{\mathbb{R}} d x(\bar{x}+\sigma x) g_{01}(x)
$$

As

$$
g_{01}(x)=g_{01}(-x)
$$

we find

$$
\prec \xi \succ=\bar{x}
$$

- Variance

$$
\prec(\xi-\prec \xi \succ)^{2} \succ=\sigma^{2} \int_{\mathbb{R}} d x x^{2} g_{01}(x)
$$

The remaining integral I can be evaluated for example using the identity

$$
\begin{array}{r}
\int_{\mathbb{R}} d x x^{2} g_{01}(x)=\left.\frac{d^{2}}{d \jmath^{2}}\right|_{\jmath=0} Z(\jmath) \\
Z(\jmath):=\int_{\mathbb{R}} d x g_{01}(x) e^{\jmath x}
\end{array}
$$

Namely

$$
Z(\jmath)=e^{\frac{J^{2}}{2}} \int_{\mathbb{R}^{2}} \prod_{i=1}^{2} d x_{i} \frac{e^{-\frac{x_{1}^{2}+x_{2}^{2}}{2}}}{2 \pi}=e^{\frac{J^{2}}{2}} \int_{0}^{\infty} d r r e^{-\frac{r^{2}}{2}}=e^{\frac{\rho^{2}}{2}}
$$

The statistical properties of a Gaussian variable are therefore fully specified by its first two moments.

7 Independence

Definition 7.1 (Conditional probability). Let (Ω, \mathcal{F}, P) a probability space and F_{1}, F_{2} two events in \mathcal{F}. Suppose

$$
P\left(F_{1}\right)>0
$$

Then the probability of the event F_{2} given the occurrence of F_{1} is

$$
P\left(F_{2} \mid F_{1}\right)=\frac{P\left(F_{2} \cap F_{1}\right)}{P\left(F_{2}\right)}
$$

A clear interpretation of this definition see [1] pag. 17.
Definition 7.2 (Independence). F_{2} is said to be independent of F_{1} if

$$
P\left(F_{2} \mid F_{1}\right)=P\left(F_{2}\right) \quad \Longleftrightarrow \quad P\left(F_{2} \cap F_{1}\right)=P\left(F_{1}\right) P\left(F_{2}\right)
$$

Definition 7.3 (Independence of random variables). The random variables

$$
\boldsymbol{\xi}_{i}: \Omega \rightarrow \mathbb{R}^{d}
$$

$i=1, \ldots$ are said to be independent iffor all integers $1 \leq k_{1}<k_{2}<k_{m}$ and all choices of Borel sets $\left\{B_{k_{i}}\right\}_{i=1}^{m} \subset$ \mathbb{R}^{d} the factorisation property

$$
P\left(\boldsymbol{\xi}_{k_{1}} \in B_{k_{1}}, \boldsymbol{\xi}_{k_{2}} \in B_{k_{2}}, \ldots, \boldsymbol{\xi}_{k_{m}} \in B_{k_{m}}\right)=\prod_{i=1}^{m} P\left(\boldsymbol{\xi}_{k_{i}} \in B_{k_{i}}\right)
$$

holds true.
The definition implies that if there exists a PDF

$$
\begin{equation*}
p_{\xi_{k_{1}} \ldots \boldsymbol{\xi}_{k_{m}}}: \underbrace{\mathbb{R}^{d} \times \mathbb{R}^{d}}_{m \text { times }} \rightarrow \mathbb{R}_{+} \tag{7.1}
\end{equation*}
$$

such that

$$
P\left(\boldsymbol{\xi}_{k_{1}} \in B_{k_{1}}, \boldsymbol{\xi}_{k_{2}} \in B_{k_{2}}, \ldots, \boldsymbol{\xi}_{k_{m}} \in B_{k_{m}}\right)=\int_{B_{k_{1}} \times B_{k_{m}}} \prod_{i=1}^{m} d^{d} x_{k_{i}} p_{\boldsymbol{\xi}_{k_{1}} \ldots \boldsymbol{\xi}_{k_{m}}}\left(\boldsymbol{x}_{k_{1}}, \ldots, \boldsymbol{x}_{k_{m}}\right)
$$

then

$$
p_{\boldsymbol{\xi}_{k_{1}} \ldots \boldsymbol{\xi}_{k_{m}}}\left(\boldsymbol{x}_{k_{1}}, \ldots, \boldsymbol{x}_{k_{m}}\right)=\prod_{i=1}^{m} p_{\boldsymbol{\xi}_{k_{i}}}\left(\boldsymbol{x}_{k_{i}}\right)
$$

Furthermore the characteristic function of m-independent random variables is equal to the product of the characteristic functions.

References

[1] L.C. Evans, An Introduction to Stochastic Differential Equations, lecture notes, http://math.berkeley. edu/~evans/. 1.8

