Exercise set 5

Exercise 1

Consider the stochastic differential equation (Ornstein-Uhlenbeck process)

$$
\begin{gather*}
d \xi_{t}=-\frac{\xi_{t}}{\tau} d t+\bar{x} \frac{d w_{t}}{\sqrt{\tau}} \tag{0.1}\\
\xi_{t_{o}}=x_{o} \tag{0.1b}
\end{gather*}
$$

for $\bar{x}, \tau>0$ some given constant parameters.

- Find the fundamental solution of (0.1a) (i.e. solve (0.1a) for the arbitrary initial data $\left(x_{o}, t_{o}\right)$).
- Write the forward Kolmogorov equation associated to (0.1a).
- Write the transition probability density solution of the forward Kolmogorov equation satisfying boundary conditions

$$
\begin{align*}
& \lim _{t \backslash t_{o}} p_{\xi}\left(x, t \mid x_{o}, t_{o}\right)=\delta\left(x-x_{o}\right) \tag{0.2a}\\
& \lim _{|x| \uparrow \infty}|x|^{1+\varepsilon} p_{\xi}\left(x, t \mid x_{o}, t_{o}\right)=0 \tag{0.2b}
\end{align*}
$$

- Analyze the structure of $p_{\xi}\left(x, t \mid x_{o}, t_{o}\right)$. In particular:
- what is behavior under the simultaneous transformation

$$
t \rightarrow t+t^{\prime} \quad \& \quad t_{o} \rightarrow t_{o}+t^{\prime}
$$

Explain the result in terms of the properties of the drift and diffusion fields of (0.1a).

- evaluate $\prec \xi_{t} \succ$
- evaluate $\prec\left(\xi_{t}-\prec \xi_{t} \succ\right)^{2} \succ$
- Study the limit

$$
\lim _{t \uparrow \infty} p_{\xi}\left(x, t \mid x_{o}, t_{o}\right)
$$

is it still solution of a partial differential equation?

Exercise 2

Consider the Ito stochastic differential equation

$$
\begin{gather*}
d \xi_{t}=-\frac{\xi_{t}}{\tau}+\frac{\xi_{t} d w_{t}}{\sqrt{\tau}} \tag{0.3a}\\
\xi_{t_{o}}=x_{o} \tag{0.3b}
\end{gather*}
$$

- Solve the forward Kolmogorov equation for the transition probability density for ξ_{t} defined in \mathbb{R}_{+}.
- As in exercise 1: inquire the behavior of the transition probability density under the simultaneous transformation

$$
t \rightarrow t+t^{\prime} \quad \& \quad t_{o} \rightarrow t_{o}+t^{\prime}
$$

Discuss the consequences of your findings for the time boundary conditions for the backward Kolmogorov equation.

- Solve the backward Kolmogorov equation for the quantity

$$
f\left(x_{o}, t_{o}\right)=\prec \xi_{t} \succ
$$

for ξ_{t} solution of (0.3a), (0.3b).

Exercise 3

Consider the random differential equation

$$
\begin{gather*}
\dot{\xi}_{t}=-\frac{\xi_{t}}{\tau}+\frac{\xi_{t} f_{t}}{\sqrt{\tau}} \tag{0.4a}\\
\xi_{t_{o}}=x_{o} \tag{0.4b}
\end{gather*}
$$

where $\tau>0$ is a dimensional constant parameter and f_{t} is a Gaussian stochastic process with average

$$
\prec f_{t} \succ=0
$$

and co-variance

$$
\prec f_{t} f_{t^{\prime}} \succ=\frac{e^{-\frac{\left|t-t^{\prime}\right|}{\varepsilon \tau_{o}}}}{2 \varepsilon \tau_{o}}
$$

where τ_{o} is a dimensional parameter measured in the same units as t (if t has the interpretation of time, then τ is the characteristic correlation time of f_{t}). The parameter ε is instead a pure number.

- Explain why (0.4a) is mathematically well defined for $\varepsilon>0$.
- Find the fundamental solution of (0.4a).
- Evaluate the n-th moment of ξ_{t} for $n \in \mathbb{N}$.
- Contrast the result for $\prec \xi_{t}^{n} \succ$ in the limit ε tending to zero with the analogous quantity evaluated for the solution of the Ito equation

$$
\begin{gather*}
d \xi_{t}=-\frac{\xi_{t}}{\tau}+\frac{\xi_{t} d w_{t}}{\sqrt{\tau}} \tag{0.5a}\\
\xi_{t_{o}}=x_{o} \tag{0.5b}
\end{gather*}
$$

and the Stratonovich equation

$$
\begin{gather*}
d \xi_{t}=-\frac{\xi_{t}}{\tau}+\frac{\xi_{t} d w_{t}}{\sqrt{\tau}} \tag{0.6a}\\
\xi_{t_{o}}=x_{o} \tag{0.6b}
\end{gather*}
$$

Discuss your findings: what is the meaning of taking the limit ε tending to zero for the process f_{t}.

Exercise 4

Given a smooth drift

$$
\boldsymbol{b}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}
$$

and diffusion covariance

$$
\boldsymbol{g}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d} \times \mathbb{R}^{d}
$$

We call

$$
-\partial_{x^{i}}\left[b^{i}(\boldsymbol{x}) p_{\star}(\boldsymbol{x})\right]+\frac{1}{2} \partial_{x^{i}} \partial_{x^{j}}\left[g^{i j}(\boldsymbol{x}) p_{\star}(\boldsymbol{x})\right]=0
$$

the stationary forward Kolmogorov equation (Fokker-Planck) on \mathbb{R}^{d}. Suppose (0.7) admits a normalizable positive definite solution. Show that if there exists well defined transition probability density p_{ξ} on \mathbb{R}^{d} solution of

$$
\partial_{t} p_{\xi}\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{o}, t_{o}\right)+\partial_{x^{i}}\left[b^{i}(\boldsymbol{x}) p_{\xi}\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{o}, t_{o}\right)\right]=\frac{1}{2} \partial_{x^{i}} \partial_{x^{j}}\left[g^{i j}(\boldsymbol{x}) p_{\xi}\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{o}, t_{o}\right)\right]
$$

then

$$
p_{\star}(\boldsymbol{x})=\int_{\mathbb{R}^{d}} d^{d} x_{o} p_{\xi}\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{o}, t_{o}\right) p_{\star}\left(\boldsymbol{x}_{o}\right)
$$

Which are the consequences of such identity for the limit

$$
\lim _{t-t_{o} \uparrow \infty} p_{\xi}\left(\boldsymbol{x}, t \mid \boldsymbol{x}_{o}, t_{o}\right)
$$

