Exercise set 5

Exercise 1

Consider the stochastic differential equation (Ornstein-Uhlenbeck process)

$$d\xi_t = -\frac{\xi_t}{\tau}dt + \bar{x}\frac{dw_t}{\sqrt{\tau}} \tag{0.1a}$$

$$\xi_{t_o} = x_o \tag{0.1b}$$

for $\bar{x}, \tau > 0$ some given constant parameters.

- Find the fundamental solution of (0.1a) (i.e. solve (0.1a) for the arbitrary initial data (x_o, t_o)).
- Write the forward Kolmogorov equation associated to (0.1a).
- Write the transition probability density solution of the forward Kolmogorov equation satisfying boundary conditions

$$\lim_{t \downarrow t_o} p_{\xi}\left(x, t | x_o, t_o\right) = \delta(x - x_o) \tag{0.2a}$$

$$\lim_{|x|\uparrow\infty} |x|^{1+\varepsilon} p_{\xi}(x,t|x_o,t_o) = 0$$
(0.2b)

- Analyze the structure of $p_{\xi}(x, t|x_o, t_o)$. In particular:
 - what is behavior under the simultaneous transformation

$$t \to t + t'$$
 & $t_o \to t_o + t'$

Explain the result in terms of the properties of the drift and diffusion fields of (0.1a).

- evaluate $\prec \xi_t \succ$
- evaluate $\prec (\xi_t \prec \xi_t \succ)^2 \succ$
- Study the limit

$$\lim_{t\uparrow\infty}p_{\xi}\left(x\,,t|x_{o},t_{o}\right)$$

is it still solution of a partial differential equation?

Exercise 2

Consider the Ito stochastic differential equation

$$d\xi_t = -\frac{\xi_t}{\tau} + \frac{\xi_t \, dw_t}{\sqrt{\tau}} \tag{0.3a}$$

$$\xi_{t_o} = x_o \tag{0.3b}$$

- Solve the forward Kolmogorov equation for the transition probability density for ξ_t defined in \mathbb{R}_+ .
- As in exercise 1: inquire the behavior of the transition probability density under the simultaneous transformation

$$t \to t + t'$$
 & $t_o \to t_o + t'$

Discuss the consequences of your findings for the time boundary conditions for the backward Kolmogorov equation.

• Solve the backward Kolmogorov equation for the quantity

$$f(x_o, t_o) = \prec \xi_t \succ$$

for ξ_t solution of (0.3a), (0.3b).

Exercise 3

Consider the random differential equation

$$\dot{\xi}_t = -\frac{\xi_t}{\tau} + \frac{\xi_t f_t}{\sqrt{\tau}} \tag{0.4a}$$

$$\xi_{t_o} = x_o \tag{0.4b}$$

where $\tau > 0$ is a dimensional constant parameter and f_t is a Gaussian stochastic process with average

$$\prec f_t \succ = 0$$

and co-variance

$$\prec f_t f_{t'} \succ = \frac{e^{-\frac{|t-t'|}{\varepsilon \tau_o}}}{2 \varepsilon \tau_o}$$

where τ_o is a dimensional parameter measured in the same units as t (if t has the interpretation of time, then τ is the characteristic correlation time of f_t). The parameter ε is instead a pure number.

- Explain why (0.4a) is mathematically well defined for $\varepsilon > 0$.
- Find the fundamental solution of (0.4a).
- Evaluate the *n*-th moment of ξ_t for $n \in \mathbb{N}$.

• Contrast the result for $\prec \xi_t^n \succ$ in the limit ε tending to zero with the analogous quantity evaluated for the solution of the *Ito* equation

$$d\xi_t = -\frac{\xi_t}{\tau} + \frac{\xi_t \, dw_t}{\sqrt{\tau}} \tag{0.5a}$$

$$\xi_{t_o} = x_o \tag{0.5b}$$

and the Stratonovich equation

$$d\xi_t = -\frac{\xi_t}{\tau} + \frac{\xi_t \, dw_t}{\sqrt{\tau}} \tag{0.6a}$$

$$\xi_{t_o} = x_o \tag{0.6b}$$

Discuss your findings: what is the meaning of taking the limit ε tending to zero for the process f_t .

Exercise 4

Given a smooth drift

and diffusion covariance

$$oldsymbol{g}:\mathbb{R}^d
ightarrow\mathbb{R}^d imes\mathbb{R}^d$$

 $oldsymbol{b}:\mathbb{R}^d
ightarrow\mathbb{R}^d$

We call

$$-\partial_{x^{i}}[b^{i}\left(\boldsymbol{x}\right) \, p_{\star}\left(\boldsymbol{x}\right)] + \frac{1}{2}\partial_{x^{i}}\partial_{x^{j}}[g^{ij}(\boldsymbol{x}) \, p_{\star}\left(\boldsymbol{x}\right)] = 0$$

the stationary forward Kolmogorov equation (Fokker-Planck) on \mathbb{R}^d . Suppose (0.7) admits a *normalizable* positive definite solution. Show that if there exists well defined transition probability density p_{ξ} on \mathbb{R}^d solution of

$$\partial_t p_{\xi} \left(\boldsymbol{x}, t \,|\, \boldsymbol{x}_o, t_o \right) + \partial_{x^i} [b^i \left(\boldsymbol{x} \right) \, p_{\xi} \left(\boldsymbol{x}, t \,|\, \boldsymbol{x}_o, t_o \right)] = \frac{1}{2} \partial_{x^i} \partial_{x^j} [g^{ij}(\boldsymbol{x}) \, p_{\xi} \left(\boldsymbol{x}, t \,|\, \boldsymbol{x}_o, t_o \right)]$$

then

$$p_{\star}(\boldsymbol{x}) = \int_{\mathbb{R}^d} d^d x_o \, p_{\xi}\left(\boldsymbol{x}, t \,|\, \boldsymbol{x}_o, t_o\right) p_{\star}(\boldsymbol{x}_o)$$

Which are the consequences of such identity for the limit

$$\lim_{t-t_o\uparrow\infty}p_{\xi}\left(\boldsymbol{x},t\,|\,\boldsymbol{x}_o,t_o\right)$$