Exercise set 3

Exercise 1

Prove that the characteristic function $\phi(t)$ of any probability distribution is positive definite, i.e. for any *n* complex numbers ξ_1, \ldots, ξ_n and real numbers t_1, \ldots, t_n

$$\sum_{i,j=1}^{n} \phi(t_i - t_j) \xi_i \xi_j^* \ge 0$$

Here ξ^* denotes the complex conjugate of ξ .

Remark 0.1 (*Remark*). It is also easy to see that $\phi(t)$ (using the properties of Lebesgue integral) is a uniformly continuous function of t.

Exercise 2

Let $\{\xi_i\}_{i=1}^{\infty}$ a sequence of i.i.d. *Gaussian* random variables with zero average and unit variance. Verify that for any $\lambda \in \mathbb{R}$

$$\eta_n = e^{\lambda \sum_{i=1}^n \xi_i - \frac{\lambda^2 n}{2}}$$

is a martingale with respect to the σ -algebra induced by the first $\{\xi_i\}_{i=1}^m$ variables $n \geq m$.

Exercise 3

Let $\{\xi_i\}_{i=1}^{\infty}$ a sequence of i.i.d. *uniformely distributed* random variable. Given $\lambda \in \mathbb{R}$ determine the condition that some map $c(\lambda)$ should satisfy in order

$$\eta_n = e^{\lambda \sum_{i=1}^n \xi_i - c(\lambda)}$$

- to be a super-martingale
- to be a martingale
- to be a sub-martingale

with respect to the σ -algebra induced by the first $\{\xi_i\}_{i=1}^m$ variables $n \geq m$.

Exercise 4

Let $\{w_t, t \ge 0\}$ a one dimensional Brownian motion with

$$\prec w_t \succ = 0$$
 & $\prec w_t^2 \succ = \sigma^2 t$

Say which one of the following stochastic processes are martingales with respect to the the σ -algebra generated \mathcal{F}_t generated by $\{w_s | , s \leq t\}$:

- $\{w_t, t \ge 0\}.$
- $\{w_t^2 xt, t \ge 0\}$ for some suitable $x \in \mathbb{R}$.
- $\{e^{xt}\cos(w_t), t \ge 0\}$ for some suitable $x \in \mathbb{R}$.

Exercise 5

Let $p_o : \mathbb{R} \to \mathbb{R}_+$ an integrable function. Consider for any $t \ge s$

$$p(x,t;s) = \int_{\mathbb{R}} dy \, \frac{e^{-\frac{(x-y)^2}{2\sigma^2(t-s)}}}{\sqrt{2\pi\sigma^2(t-s)}} p_o(y) \tag{0.1}$$

- Under which condition p(x, t; s) is a probability density?
- Show that p(x, t; s) satisfies a suitable Fokker-Planck equation (hint: use the Fourier transform).
- Determine the limit

$$\lim_{t \downarrow s} p(x,t;s)$$

- Determine an initial value problem (evolution law and initial condition) of which () is solution.
- Give a probabilistic interpretation of the integral kernel

$$k(x,t,y,s) = \frac{e^{-\frac{(x-y)^2}{2\sigma^2(t-s)}}}{\sqrt{2\pi\sigma^2(t-s)}}$$

- Give a probabilistic interpretation of the integral defining p(x, t).
- Compute p(x, t) explicitly in the case

$$p_o(y) = \frac{e^{-\frac{(x-y)^2}{2\rho^2}}}{\sqrt{2\pi\rho^2}}$$

and determine a value of ρ^2 such that

$$\partial_s p(x,t;s) = 0$$

and interpret the result.