Exercise set 3

Exercise 1

Prove that the characteristic function $\phi(t)$ of any probability distribution is positive definite, i.e. for any n complex numbers ξ_{1}, \ldots, ξ_{n} and real numbers t_{1}, \ldots, t_{n}

$$
\sum_{i, j=1}^{n} \phi\left(t_{i}-t_{j}\right) \xi_{i} \xi_{j}^{*} \geq 0
$$

Here ξ^{*} denotes the complex conjugate of ξ.
Remark $\mathbf{0 . 1}$ (Remark). It is also easy to see that $\phi(t)$ (using the properties of Lebesgue integral) is a uniformly continuous function of t.

Exercise 2

Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ a sequence of i.i.d. Gaussian random variables with zero average and unit variance. Verify that for any $\lambda \in \mathbb{R}$

$$
\eta_{n}=e^{\lambda \sum_{i=1}^{n} \xi_{i}-\frac{\lambda^{2} n}{2}}
$$

is a martingale with respect to the σ-algebra induced by the first $\left\{\xi_{i}\right\}_{i=1}^{m}$ variables $n \geq m$.

Exercise 3

Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ a sequence of i.i.d. uniformely distributed random variable. Given $\lambda \in \mathbb{R}$ determine the condition that some map $c(\lambda)$ should satisfy in order

$$
\eta_{n}=e^{\lambda \sum_{i=1}^{n} \xi_{i}-c(\lambda)}
$$

- to be a super-martingale
- to be a martingale
- to be a sub-martingale
with respect to the σ-algebra induced by the first $\left\{\xi_{i}\right\}_{i=1}^{m}$ variables $n \geq m$.

Exercise 4

Let $\left\{w_{t}, t \geq 0\right\}$ a one dimensional Brownian motion with

$$
\prec w_{t} \succ=0 \quad \& \quad \prec w_{t}^{2} \succ=\sigma^{2} t
$$

Say which one of the following stochastic processes are martingales with respect to the the σ-algebra generated \mathcal{F}_{t} generated by $\left\{w_{s} \mid, s \leq t\right\}$:

- $\left\{w_{t}, t \geq 0\right\}$.
- $\left\{w_{t}^{2}-x t, t \geq 0\right\}$ for some suitable $x \in \mathbb{R}$.
- $\left\{e^{x t} \cos \left(w_{t}\right), t \geq 0\right\}$ for some suitable $x \in \mathbb{R}$.

Exercise 5

Let $p_{o}: \mathbb{R} \rightarrow \mathbb{R}_{+}$an integrable function. Consider for any $t \geq s$

$$
\begin{equation*}
p(x, t ; s)=\int_{\mathbb{R}} d y \frac{e^{-\frac{(x-y)^{2}}{2 \sigma^{2}(t-s)}}}{\sqrt{2 \pi \sigma^{2}(t-s)}} p_{o}(y) \tag{0.1}
\end{equation*}
$$

- Under which condition $p(x, t ; s)$ is a probability density?
- Show that $p(x, t ; s)$ satisfies a suitable Fokker-Planck equation (hint: use the Fourier transform).
- Determine the limit

$$
\lim _{t \downarrow s} p(x, t ; s)
$$

- Determine an initial value problem (evolution law and inirtial condition) of which () is solution.
- Give a probabilistic interpretation of the integral kernel

$$
k(x, t, y, s)=\frac{e^{-\frac{(x-y)^{2}}{2 \sigma^{2}(t-s)}}}{\sqrt{2 \pi \sigma^{2}(t-s)}}
$$

- Give a probabilistic interpretation of the integral defining $p(x, t)$.
- Compute $p(x, t)$ explicitly in the case

$$
p_{o}(y)=\frac{e^{-\frac{(x-y)^{2}}{2 \rho^{2}}}}{\sqrt{2 \pi \rho^{2}}}
$$

and determine a value of ρ^{2} such that

$$
\partial_{s} p(x, t ; s)=0
$$

and interpret the result.

