Exercise set 1

Exercise 1

Let $\xi: \Omega \rightarrow \mathbb{R}_{+}$be a random variable with density

$$
\begin{equation*}
p_{\xi}(x)=\frac{e^{-\frac{x}{\bar{x}}}}{\bar{x}} \tag{0.1}
\end{equation*}
$$

- Compute the characteristic and the generating functions of ξ. The generating function is defined as

$$
g_{\xi}(t)=\prec e^{-t \xi} \succ \quad t>0
$$

- Explain what is the relation between the generating and the characteristic function. Given the generating function g_{ξ}, is it possible to reconstruct the density p_{ξ} ?
- Consider a sequence $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ of i.i.d. random variables with density specified by 0.1 . What is the asymptotic distribution of

$$
S_{n}[\xi]=\frac{1}{n} \sum_{i=1}^{n} \xi_{i}
$$

for $n \uparrow \infty$?

Exercise 2

Prove the following proposition:
Definition 0.1 (Chernoff inequality). Let ξ any random variable such that

$$
g_{\xi}(t)=\prec e^{t \xi} \succ<\infty
$$

then

$$
P(\xi \geq a) \leq \min _{t} e^{-a t} g_{\xi}(t)
$$

Give the explicit expression of the bound for ξ a Gaussian random variable with zero average and variance σ^{2}.

Exercise 3

Let $\xi: \Omega \rightarrow \mathbb{N}$ a Poisson random variable:

$$
P_{\xi}(i ; \lambda t)=\frac{(\lambda t)^{i}}{\Gamma(i+1)} e^{-\lambda t}
$$

It $P_{\xi}(i ; \lambda)$ describes the probability of i events of the same type occur simultaneously while being mutually independent and having the same probability per unit of time λ. Compute

- the characteristic function
- the mean value
- the variance of the Poisson distribution.

Exercise 4

Consider a random variable $\xi: \Omega \rightarrow[0,1]$ with uniform density

$$
p_{\xi}(x)=1
$$

Find an invertible function f

$$
f:[0,1] \rightarrow \mathbb{R}_{+}
$$

such that the random variable

$$
\eta=f(\xi)
$$

is exponentially distributed (i.e. according to 0.1)

Exercise 5

Let $A_{i j}$ a strictly positive definite matrix in d-dimensions $\left(A \in \mathbb{R}^{d} \times \mathbb{R}^{d}\right)$.

- Prove that for any $\boldsymbol{m}=\left(m_{1} \ldots m_{d}\right) \in \mathbb{R}^{d}$

$$
\begin{aligned}
& p_{\boldsymbol{\xi}}(\boldsymbol{x})=\frac{\sqrt{\operatorname{det} A} e^{-\frac{\|A(\boldsymbol{x}-\boldsymbol{m})\|^{2}}{2}}}{(2 \pi)^{\frac{d}{2}}} \\
& \|A(\boldsymbol{x}-\boldsymbol{m})\|^{2}=\sum_{i j=1}^{d}\left(x_{i}-m_{i}\right) A_{i j}\left(x_{j}-m_{j}\right)
\end{aligned}
$$

is the probability density of the sequence $\boldsymbol{\xi}=\left(\xi_{1} \ldots \xi_{d}\right)$ Gaussian random variables.

- Compute the average of ξ_{i}
- Compute the second order correlation $\prec \xi_{i} \xi_{j} \succ(i, j$ arbitrary $)$
- Compute the fourth order correlation $\prec \xi_{i} \xi_{j} \xi_{l} \xi_{k} \succ(i, j, l, k$ arbitrary $)$

Exercise 6

Let (Ω, \mathcal{F}, P) a finite dimensional probability space η an arbitrary random variable on it and $\mathcal{P}_{1} \subseteq \mathcal{P}_{2} \subseteq \ldots \subseteq \mathcal{P}_{n}$ a growing sequence of partitions of Ω. Prove that the sequence $\left\{\xi_{i}\right\}_{i=1}^{n}$ whose elements are defined by

$$
\xi_{k}=\prec \eta \mid \mathcal{P}_{k} \succ \equiv E\left(\eta \mid \mathcal{P}_{k}\right)
$$

is a martingale.

