Exercise set 1

Exercise 1

Let $\xi: \Omega \to \mathbb{R}_+$ be a random variable with density

$$p_{\xi}(x) = \frac{e^{-\frac{x}{\bar{x}}}}{\bar{x}} \tag{0.1}$$

• Compute the *characteristic* and the *generating* functions of ξ . The generating function is defined as

$$g_{\xi}(t) = \prec e^{-t\xi} \succ \qquad t > 0$$

- Explain what is the relation between the generating and the characteristic function. Given the generating function g_{ξ} , is it possible to reconstruct the density p_{ξ} ?
- Consider a sequence {ξ_i}[∞]_{i=1} of i.i.d. random variables with density specified by (0.1). What is the asymptotic distribution of

$$S_n[\xi] = \frac{1}{n} \sum_{i=1}^n \xi_i$$

for $n \uparrow \infty$?

Exercise 2

Prove the following proposition:

Definition 0.1 (*Chernoff inequality*). Let ξ any random variable such that

$$g_{\xi}(t) = \prec e^{t\,\xi} \succ < \infty$$

then

$$P(\xi \ge a) \le \min_{t} e^{-at} g_{\xi}(t)$$

Give the explicit expression of the bound for ξ a Gaussian random variable with zero average and variance σ^2 .

Exercise 3

Let $\xi : \Omega \to \mathbb{N}$ a Poisson random variable:

$$P_{\xi}(i;\lambda t) = \frac{(\lambda t)^i}{\Gamma(i+1)} e^{-\lambda t}$$

It $P_{\xi}(i; \lambda)$ describes the probability of *i* events of the same type occur simultaneously while being mutually independent and having the same probability per unit of time λ . Compute

- the characteristic function
- the mean value
- the variance of the Poisson distribution.

Exercise 4

Consider a random variable $\xi : \Omega \to [0, 1]$ with uniform density

$$p_{\xi}(x) = 1$$

Find an invertible function f

$$f:[0,1]\to\mathbb{R}_+$$

such that the random variable

 $\eta = f(\xi)$

is exponentially distributed (i.e. according to (0.1))

Exercise 5

Let A_{ij} a strictly positive definite matrix in d-dimensions $(A \in \mathbb{R}^d \times \mathbb{R}^d)$.

• Prove that for any $\boldsymbol{m} = (m_1 \dots m_d) \in \mathbb{R}^d$

$$p_{\xi}(\boldsymbol{x}) = \frac{\sqrt{\det A} e^{-\frac{||A(\boldsymbol{x}-\boldsymbol{m})||^2}{2}}}{(2\pi)^{\frac{d}{2}}}$$
$$||A(\boldsymbol{x}-\boldsymbol{m})||^2 = \sum_{i\,j=1}^d (x_i - m_i) A_{i\,j}(x_j - m_j)$$

is the probability density of the sequence $\boldsymbol{\xi} = (\xi_1 \dots \xi_d)$ Gaussian random variables.

- Compute the average of ξ_i
- Compute the second order correlation $\prec \xi_i \xi_j \succ (i, j \text{ arbitrary})$
- Compute the *fourth order correlation* $\prec \xi_i \xi_j \xi_l \xi_k \succ (i, j, l, k \text{ arbitrary})$

Exercise 6

Let (Ω, \mathcal{F}, P) a finite dimensional probability space η an arbitrary random variable on it and $\mathcal{P}_1 \subseteq \mathcal{P}_2 \subseteq \cdots \subseteq \mathcal{P}_n$ a growing sequence of partitions of Ω . Prove that the sequence $\{\xi_i\}_{i=1}^n$ whose elements are defined by

$$\xi_k = \prec \eta | \mathcal{P}_k \succ \equiv E(\eta | \mathcal{P}_k)$$

is a martingale.