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1. The birth-death process

Let N(t) ∈ N0 denote the population size, i.e., the number of individuals present at time
t ∈ R+. Given N(t) = n, assume that birth and death are independent Poisson processes
with rates Bn and Dn respectively. This means that in a population of fixed size n the
probability of having i birth events and j death events during a time period of length ∆t
is

(Bn∆t)ieBn∆t

i!
· (Dn∆t)jeDn∆t

j!
for i, j = 0, 1, 2, . . . . (N.B. births and deaths would change the population size, and so to
keep it fixed in this thought experiment, every newborn is immediately removed and every
dead individual is immediately replaced.) From the above it follows that during a time
period of length ∆t

Prob{1 births & 0 deaths} = Bn∆t+ O(∆t)2

Prob{0 births & 1 deaths} = Dn∆t+ O(∆t)2

Prob{0 births & 0 deaths} = 1− (Bn +Dn)∆t+ O(∆t)2

Prob{anything else} = O(∆t)2

as ∆t ↓ 0. Hence,

Prob{N(t+ ∆t) = N(t) + 1} = Bn∆t+ O(∆t)2

Prob{N(t+ ∆t) = N(t)− 1} = Dn∆t+ O(∆t)2

Prob{N(t+ ∆t) = N(t)} = 1− (Bn +Dn)∆t+ O(∆t)2

while larger jumps in population size are O(∆t)2. Let

Pn(t) := Prob{N(t) = n}

denote the probability that the population at time t has size n ≥ 0. Then, from the
above,

Pn(t+ ∆t) = Bn−1∆tPn−1(t) +Dn+1∆tPn+1(t)
+

(
1− (Bn +Dn)

)
Pn(t) + O(∆t)2,

or equivalently,
Pn(t+∆t)−Pn(t)

∆t = Bn−1Pn−1(t) +Dn+1Pn+1(t)
− (Bn +Dn)Pn(t) + O(∆t).

1



2 STEFAN GERITZ

Letting ∆t ↓ 0 we get

(1) Ṗn = Bn−1Pn−1 +Dn+1Pn+1 − (Bn +Dn)Pn

for n ≥ 0. For biological consistency we assume that B−1, B0 and D0 are all zero.
(Why?)

The system (1) of differential equations describes the evolution of the probability distribu-
tion of the population size. One readily checks that

d

dt

∞∑
n=0

Pn(t) = 0

and so the simplex
∑∞

n=0 Pn(t) = 1 is invariant indeed. (Exercise!)

2. Population extinction

Setting Ṗn = 0 in (1) and solving for the Pn, we find that P0 = 1 and Pn = 0 for all n ≥ 1.
In other words, the extinct population is the only equilibrium. In fact, if Dn > 0 for all
n ≥ 1 and Dn > Bn for large values of n, then eventual extinction of the population is
certain no matter what is the initial condition.

To be able to say something about the expected time till extinction, we introduce the
conditional probability distribution for non-extinct populations

P c
n(t) := Prob{N(t) = n |N(t) ≥ 1}

to denote the probability that at time t the population size is n ≥ 1 conditioned on the
event that the population is not extinct, i.e., that N(t) ≥ 1. Since

P c
n(t) =

Pn(t)
1− P0(t)

,

it readily follows from (1) that

(2) Ṗ c
n = Bn−1P

c
n−1 +Dn+1P

c
n+1 − (Bn +Dn)P c

n +D1P
c
1P

c
n

for n ≥ 1. (Exercise.) In fact, there is no reason why the system (2) would not have an
equilibrium. So, let us suppose it has and denote this equilibrium by P̂ c

n (n ≥ 1).

What has this to do with the expected time till extinction? Since B0 = 0, the probability
that the population goes extinct at or before time t is equal to P0(t). In other words, P0(t)
is the (cumulative) distribution function of the time of extinction, and so its derivative
Ṗ0(t) is the probability density of extinction times. From (1) and the definition of P c

n(t)
we have

Ṗ0(t) = D1P1(t) = D1P
c
1 (t)

(
1− P0(t)

)
.
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Given the initial condition P0(0) = 0 and Pn(0) = P̂ c
n for all n ≥ 1, we have that P c

1 (t) = P̂ c
1

for all t. Solving the above equation we get

(3) P0(t) = 1− e−tD1P̂ c
1 ,

which is the (cumulative) distribution function of the exponential distribution. In other
words, a population starting with the conditional distribution P̂ c

n (n ≥ 1) has an exponen-
tially distributed extinction time with expectation (D1P̂

c
1 )−1 and variance (D1P̂

c
1 )−2.

What about the extinction time for a population with arbitrary initial condition? How
good (3) is an approximation then depends on how fast the conditional distribution P c

n

converges to its equilibrium. We shall not go into this now.

3. Diffusion approximation

We now investigate under what conditions we can provide a Fokker-Planck approximation
of the system (1). To this end, define the probability flux as

(4) JN (t) := BNPN (t)−DN+1PN+1(t).

Then, from (1),

(5)
d

dt

N∑
n=0

Pn(t) = −JN (t).

Let ∆x > 0 be a dimensionless scaling parameter, and let p ∈ C2(R2
+) be such that

∆x p(x, t) = PN (t),

whenever x = N∆x. Suppose further that there exists µ, σ ∈ C2(R+) with

(6) ∆x (BN −DN ) → µ(x)
∆x2(BN +DN ) → σ2(x)

as ∆x → 0 and N → ∞ such that x = N∆x > 0 remains constant. From (4) and (6) we
have

JN = ∆x(BN−DN )p(x,t)+∆x(BN+1−DN+1)p(x+∆x,t)
2

−∆x2(BN+1+DN+1)p(x+∆x,t)+∆x2(BN +DN )p(x,t)
2∆x

→ µ(x)p(x, t)− ∂x

(
σ2(x)p(x, t)

)
and

d

dt

N∑
n=0

Pn(t)→ d

dt

∫ x

0
p(ξ, t)dξ
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as ∆x→ 0, and hence from(5)

d

dt

∫ x

0
p(ξ, t)dξ = −µ(x)p(x, t) +

1
2
∂x

(
σ2(x)p(x, t)

)
.

Differentiation with respect to x gives the Fokker-Planck equation

(7) ∂tp = −∂x

(
µ(x)p(x, t)

)
+

1
2
∂2

x

(
σ2(x)p(x, t)

)
with corresponding Ito stochastic differential equation

(8) dx = µ(x)dt+ σ(x)dω

where σ(x) :=
√
σ2(x). These limits hold at least point-wise, i.e., for fixed x.

3.1. Example. The model in this example is called the ”SIS-model” or ”Levin’s metapop-
ulation model”, depending on the interpretation of the parameters. In either case

(9) BN = βN(Nmax −N) & DN = δN

for 0 ≤ N ≤ Nmax. (As the SIS-model, N is the number of infected individuals and
Nmax−N the number of susceptable individuals, and BN is the rate of new infections, while
DN is the rate at which infected individuals recover and become suceptable again. The total
population of infected plus susceptables is a constant Nmax. As Levin’s metapopulation
model, N in the number of occupied patches, Nmax−N the number of unoccupied patches,
Nmax the total number of patches occupied or not, and BN is the colonization rate of
unoccupied patches, while DN is the extinction rate of local populations.)

Rewriting the birth and death rates using x = N∆x and xmax = Nmax∆x gives

BN =
βx(xmax − x)

∆x2
& DN =

δx

∆x
.

If β, δ and xmax are fixed, then ∆x(BN −DN ) → ∞ as ∆x → 0. Obviously, we have to
somehow scale β, δ and xmax with ∆x to keep µ(x) finite. To this end, expand β, δ and
xmax as (possibly truncated) Laurent series of powers of ∆x:

β = β0 + β1∆x+ β2∆x2 + . . .
δ = δ0∆x−1 + δ1 + δ2∆x+ . . .

xmax = x0∆x−1 + x1 + x2∆x+ . . . .

Then
∆x(BN −DN ) = xx0β0∆x−2

− (x2β0 − xx1β0 − xx0β1 + xδ0)∆x−1

− (x2β1 − xx1β1 + xδ1) + . . . ,

(∆x)2(BN +DN ) = xx0β0∆x−1

− (x2β0 − xx1β0 − xx0β1 − xδ0)
− (x2β1 − xx1β1 − xδ1)∆x+ . . . .
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To keep limits finite as ∆x ↓ 0, necessarily β0 = 0 and x0β1 = δ0. Consequently,

(10)
β = β1∆x+ O(∆x2)
δ = x0β1∆x−1 + δ1 + O(∆x)

xmax = x0∆x−1 + x1 + O(∆x)

and
µ(x) = β1x(x1 − x)− δ1x
σ2(x) = 2x0β1x.

Conditions (10) ensure that (1) has a Fokker-Planck limit (7) (and corresponding SDE-limit
(8)) with µ and σ2 as given in the above equations.

3.2. Example. The model in this example is a simple mass-action model: new individuals
are born at a constant per capita rate, and individuals die at a constant per capita rate
or because of interaction with other individuals, leading to a quadratic term in the death
rate:

(11) BN = βN & DN = δN + γN2.

Rewriting the birth and death rates using x = N∆x and xmax = Nmax∆x gives

BN =
βx

∆x
& DN =

δx

∆x
+
γx2

∆x2
.

Expand β, δ and γ as a Laurent series of powers of ∆x:

β = · · ·+ β−1∆x−1 + β0 + β1∆x+ β2∆x2 + . . .
γ = · · ·+ γ−1∆x−1 + γ0 + γ1∆x+ γ2∆x2 + . . .
δ = · · ·+ δ−1∆x−1 + δ0 + δ1∆x+ δ2∆x2 + . . .

Then, to keep ∆x(BN −DN ) and ∆x2(BN +DN ) finite as ∆x→ 0, necessarily

βi = 0 ∀i ≤ −2 & γi = 0 ∀i ≤ 0 & δi = βi ∀i ≤ −1,

so that
β = β−1/∆x+ β0 + O(∆x),
γ = γ1∆x+ O(∆x)2,
δ = δ0 + O(∆x).

Under these conditions, and only under these conditions does there exist a Fokker-Plank
limit of the birth-death process defined by (11). The corresponding drift term and diffusion
coefficient are

µ(x) = β0x− δ0x− γ1x
2

σ2(x) = 2β−1x.


