Page 5 table

Source	SS	df	Mean square
Between groups	4662.233	$\underline{2}$	$\underline{2331.116}$
Within groups	$\underline{191729.2}$	$\underline{587}$	326.626
Total	196391.4	589	

Relations:

$\mathrm{SST}=\mathrm{SSG}+\mathrm{SSE}$
$\mathrm{DFT}=\mathrm{DFG}+\mathrm{DFE}$
$\mathrm{MSG}=\mathrm{SSG} / \mathrm{DFG}$
$\mathrm{MSE}=\mathrm{SSE} / \mathrm{DFE}$
$\mathrm{F}=\mathrm{MSG} / \mathrm{MSE}=\frac{2331.116}{326.626}=7.137 \quad \nu_{1}=2, \nu_{2}=587$
$F_{.05}(2,587)=3.011$
Since observed F larger than 3.011, we can reject H_{0} at 5% level of significance.

Example 1

$$
\begin{aligned}
& H_{0}: \mu_{S U}-\frac{1}{2}\left(\mu_{U N}+\mu_{S K}\right)=0 \\
& H_{a}: \mu_{S U}-\frac{1}{2}\left(\mu_{U N}+\mu_{S K}\right)>0
\end{aligned}
$$

T.S.

$$
\begin{aligned}
c_{1}=\bar{x}_{S U} & -\frac{1}{2}\left(\bar{x}_{S K}+\bar{x}_{U N}\right)=80.51-\frac{1}{2}(71.21+70.42)=9.69 \\
S E_{c_{1}} & =\sqrt{326.626} \sqrt{\frac{1}{51}+\frac{(-0.5)^{2}}{91}+\frac{(-0.5)^{2}}{448}}=2.53 \\
t & =\frac{c_{1}}{S E_{c_{1}}}=\frac{9.69}{2.53}=3.83 \quad \nu=D F E=587
\end{aligned}
$$

R. R.: Reject H_{0} if $t>t_{.05}(587)=1.645$

Conclusion:
Since observed $t>1.645$, we can reject H_{0} at 5% level of signifiance and conclude that mean score of supervisors is higher than the average of mean score of unskilled and skilled workers.

Example 2

$H_{0}: \mu_{U N}-\mu_{S K}=0$
$H_{a}: \mu_{U N}-\mu S K \neq 0$
T.S.

$$
\begin{gathered}
c_{2}=70.42-71.21=-0.79 \\
S E_{c_{2}}=\sqrt{326.626} \sqrt{\frac{1}{448}+\frac{(-1)^{2}}{91}}=2.08 \\
t=\frac{c_{2}}{S E_{c_{2}}}=\frac{-0.79}{2.08}=-0.36
\end{gathered}
$$

R.R.

Reject H_{0} if $|t|>t .025(587)=1.96$ at 5% level of significance.
Conclusion:
Since observed $|t|<1.96$, we cannot reject H_{0} and conclude that the data doe not provide us with sufficient evidence in favor of a difference in population mean SCI scores between unskilled and skilled workers.

