Page 5 table

Source	\mathbf{SS}	df	Mean square	
Between groups	4662.233	$\underline{2}$	<u>2331.116</u>	
Within groups	$\underline{191729.2}$	587	326. 626	
Total	196391.4	589		
Relations:				
SST = SSG + SSE				
DFT = DFG + DFE				
MSG = SSG/DFG	r T			
MSE = SSE/DFE				
F = MSG/MSE =	$\frac{2331.116}{326.626} =$	7.137	$\nu_1 = 2, \nu_2 = 587$	
$F_{.05}(2,587) = 3.011$				
Since observed F larger than 3.011, we can reject H_0 at 5% level of significance.				

Example 1

$$\begin{split} H_0 &: \mu_{SU} - \frac{1}{2}(\mu_{UN} + \mu_{SK}) = 0\\ H_a &: \mu_{SU} - \frac{1}{2}(\mu_{UN} + \mu_{SK}) > 0\\ \text{T.S.} \\ c_1 &= \overline{x}_{SU} - \frac{1}{2}(\overline{x}_{SK} + \overline{x}_{UN}) = 80.51 - \frac{1}{2}(71.21 + 70.42) = 9.69\\ SE_{c_1} &= \sqrt{326.626}\sqrt{\frac{1}{51} + \frac{(-0.5)^2}{91} + \frac{(-0.5)^2}{448}} = 2.53\\ t &= \frac{c_1}{SE_{c_1}} = \frac{9.69}{2.53} = 3.83 \qquad \nu = DFE = 587 \end{split}$$

R. R.: Reject H_0 if $t > t_{.05}(587) = 1.645$ Conclusion:

Since observed t > 1.645, we can reject H_0 at 5% level of signifiance and conclude that mean score of supervisors is higher than the average of mean score of unskilled and skilled workers.

Example 2

 $\begin{aligned} H_0: \mu_{UN} - \mu_{SK} &= 0 \\ H_a: \mu_{UN} - \mu SK \neq 0 \\ \text{T.S.} \end{aligned}$

$$c_{2} = 70.42 - 71.21 = -0.79$$
$$SE_{c_{2}} = \sqrt{326.626} \sqrt{\frac{1}{448} + \frac{(-1)^{2}}{91}} = 2.08$$
$$t = \frac{c_{2}}{SE_{c_{2}}} = \frac{-0.79}{2.08} = -0.36$$

R.R.

Reject H_0 if $|t| > t_{.025}(587) = 1.96$ at 5% level of significance. Conclusion:

Since observed |t| < 1.96, we cannot reject H_0 and conclude that the data doe not provide us with sufficient evidence in favor of a difference in population mean SCI scores between unskilled and skilled workers.