Solution 1

(a) summary statistics

Categories	mean	standard deviation	sample size
novelist	71.44776	13.05151	67
poet	63.18750	17.29710	32
nonfiction writer	76.875	14.09691	24

(b) Assumptions: Populations are normal with the same standard deviation.
(c) ANOVA
$H_{0}: \mu_{N O V}=\mu_{P}=\mu_{N F}$
H_{a} : population mean are not all equal.

ANOVA table and F statistic

	SS	DF	MS	F
between the group	2744.19	2	1372.10	6.56
within the group	25088.07	120	209.07	
Total	27832.26	122		

Since $F_{o b}>F_{.05}(2,120)=3.072$, we can reject H_{0} at 5% level of significance and conclude that the mean age of death for different groups of writers are not the same.
NOTE: If you cannnot find the exact F value in the F table, find the value closest to the critical value. In this example you may find $F_{.05}(2,100)$.
(d)
$H_{0}: \mu_{P}=\frac{1}{2}\left(\mu_{N O V}+\mu_{N F}\right)$

$$
H_{a}: \mu_{P}<\frac{1}{2}\left(\mu_{N O V}+\mu_{N F}\right)
$$

T.S.

$$
\begin{aligned}
c & =a_{p} \bar{x}_{p}+a_{\text {nov }} \bar{x}_{n o v}+a_{n f} \bar{x}_{n f} \\
& =1 \times 63.19-0.5 \times 71.45-0.5 \times 76.88 \\
& =-11 \\
S E_{c} & =\sqrt{\mathrm{MSE}} \sqrt{\frac{a_{P}^{2}}{n_{P}}+\frac{a_{N O V}^{2}}{n_{N O V}}+\frac{a_{N F}^{2}}{n_{N F}}} \\
& =\sqrt{209.07} \sqrt{1 / 32+0.25 / 67+0.25 / 24} \\
& \approx=3.12 \\
t & =\frac{c}{S E_{c}}=\frac{-11}{3.12} \approx-3.51 \\
\nu & =120
\end{aligned}
$$

R.R. : Reject H_{0} if $t<-t .05(120)=-1.658$

Conclusion: Since $t_{o b}<-1.658$, we can reject H_{0} at 5% level of significance and conclude that poets die younger than novelist and nonfiction writers.

