Solution 1

 $\begin{array}{l} H_{0}:p_{1}-p_{2}=0\\ H_{a}:p1-p_{2}>0\\ {\rm T.S.} \end{array}$

$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2} = \frac{1370 \times 29\% + 1370 \times 18\%}{1370 \times 2} = \frac{643.9}{1370 \times 2} = 23.5\%$$

$$Z = \frac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}(1 - \hat{p})(\frac{1}{n_1} + \frac{1}{n_2})}}$$

$$= \frac{0.29 - 0.18}{\sqrt{0.235 \times 0.765 \times \frac{2}{1370}}}$$

$$\approx 6.8$$

R.R. Reject H_0 if $z > z_{.05} = 1.645$. Conclusion:

Since $z_{ob} >> 1.645$ we can reject H_0 at 5% level of significance and conclude that there has been a significant change in the percent of internet users who download music. 95% confidence interval for $p_1 - p_2$ is

$$\begin{split} \hat{p_1} - \hat{p_2} \pm z_{.05} \sqrt{\frac{\hat{p_1}(1-\hat{p_1})}{n_1} + \frac{\hat{p_2}(1-\hat{p_2})}{n_2}} \\ \Longrightarrow &(0.29 - 0.18) \pm 1.96 \times \sqrt{\frac{0.29 \times 0.71}{1370} + \frac{0.18 \times 0.82}{1370}} \\ \Longrightarrow &0.11 \pm 0.03148 \\ \Longrightarrow &(0.078516, \ 0.14148) \end{split}$$

Solution -

2 weeks				118	120		126	126	129	
16 weeks	98	110	110			124				140
Rank	1	2.5	2.5	<u>4</u>	<u>5</u>	6	7.5	<u>7.5</u>	<u>9</u>	10

 H_0 : Breaking strength have the same distribution.

 ${\cal H}_a$: Breaking strength are low ver for strips buried longer. T.S.

$$W = 4 + 5 + 7.5 + 7.5 + 9 = 33$$
$$\mu_W = \frac{5 \times (10 + 1)}{2} = 27.5$$
$$\sigma_W^2 = \frac{5 \times 5 \times (10 + 1)}{12} = 22.917$$
$$\sigma_W = 4.787$$

R.R. If $\frac{W - \mu_W}{\sigma_W} > 2$, reject H_0 . Conclusion: Since $\frac{W - \mu_W}{\sigma_W} = \frac{33 - 27.5}{4.787} = 1.1489 < 2$, we cannot reject H_0 .

Solution 3

Initial major	Engineering	Management	Liberal arts	Other	Total
Biology	$13\ (25.3)$	25(34.6)	158(130.2)	202 (207.9)	398
Chemistry	16(7.2)	15 (9.9)	19(37.3)	64 (59.6)	114
Mathematics	3(4.6)	$11 \ (6.3)$	20(23.6)	38 (37.6)	72
Physics	9(3.9)	5(5.3)	14(20.0)	33 (31.9)	61
Total	41	56	211	337	645

 H_0 : Initial major and transferred area are independent.

 H_a : Initial major and transferred area are NOT independent.

$$\chi^{2} = \sum_{i} \sum_{j} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$
$$= \frac{(13 - 25.3)^{2}}{25.3} + \frac{(25 - 34.6)^{2}}{34.6} + \dots + \frac{(33 - 31.9)^{2}}{31.9}$$
$$\approx 50.5$$
$$\nu = (4 - 1)(4 - 1) = 9$$

R.R.

Reject H_0 if $\chi^2 > \chi^2_{.05}(9) = 16.92$ Conclusion:

Since $\chi^2_{ob} > 16.92$, we can reject H_0 at 5% level of significance and conclude that there is dependence between initial major and transferred area.

Solution to 4

Α	10	20	25		30	33		37		41	43	46	46					
r_A	1	2.5	4		6	7		9		11.5	13	14.5	14.5					
В		20		27			35		40	41				50	50	54	56	57
r_B		2.5		5			8		10	11.5				16.5	16.5	18	19	20

 H_0 : Two teaching methods are the same.

 H_a : Two teaching methods are not the same. T.S.

$$W = 1 + 2.5 + 4 + 6 + 7 + 9 + 11.5 + 13 + 14.5 + 14.5 = 83$$

$$\mu_W = \frac{10(20+1)}{2} = 5 \times 21 = 105$$

$$\sigma_W^2 = \frac{10 \times 10 \times (20+1)}{12} = 175 \qquad \sigma_W = 13.23$$

$$Z = \frac{W - \mu_W}{\sigma_W} = \frac{83 - 105}{13.23} = -1.66$$

P-value = $P(Z < -1.66) = 1 - 0.9515 = 0.0485$

Conclusion:

Since p-value is less than 5%, we can reject H_0 at 5% level of significance.

Solution to 5

$ \mathbf{d} $	1	1	2	2	2	3	3	3	3	3	3	6	6	6	6	6	(6)
\mathbf{R}	1.5	1.5	4	4	4	8.5	8.5	8.5	8.5	8.5	8.5	14.5	14.5	14.5	14.5	14.5	14.5
W^+	= 138	.5															