Please note that this is only an outline.
1.

$$
\begin{aligned}
& \bar{X}=35.09, \quad s^{2}=125.2008, \quad s=11.189 \quad \alpha=5 \% \\
& \quad H_{0}: \mu=32 \\
& H_{a}: \mu>32 \\
& \text { T.S. }: Z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}=\frac{35.09-32}{11.189 / \sqrt{44}}=1.83 \\
& \quad \text { P-value } \quad P(Z>1.83)=1-0.9664=0.0336
\end{aligned}
$$

Conclusion: Since the p-value is less than 5%, we can reject H_{0} at 5% level of significance.
2.

$$
\begin{aligned}
& H_{0}: \mu=0.3 \\
& H_{a}: \mu>30 \\
& \text { T.S. }: Z=\frac{\bar{x}-\mu_{0}}{\sigma / \sqrt{n}}=\frac{0.7-0.3}{0.4 / \sqrt{60}}=7.7459 \\
& \quad \text { P-value }<0.0001
\end{aligned}
$$

Conclusion: reject H_{0}
3. (a)

$$
\begin{aligned}
\alpha & =P\left(\bar{X}>43.12 \mid \mu_{0}=40\right) \\
& =P\left(Z>\frac{43.12-40}{60 / \sqrt{1000}}\right. \\
& =P(Z>1.64) \\
& =1-0.9495=0.0505
\end{aligned}
$$

(b)

$$
\begin{aligned}
\beta & =P\left(\bar{X}<43.12 \mid \mu_{a}=45\right) \\
& =P\left(Z<\frac{43.12-45}{60 / \sqrt{1000}}\right. \\
& =P(Z<-0.99) \\
& =1-0.8389=0.1611
\end{aligned}
$$

(c)

$$
\begin{aligned}
\text { power } & =P\left(\bar{X}>43.12 \mid \mu_{a} 50\right) \\
& =P\left(Z>\frac{43.12-50}{60 / \sqrt{1000}}\right. \\
& =P(Z>-3.63)=1
\end{aligned}
$$

4. $H_{0}: \mu=0$
$H_{a}: \mu>0$
Rejection region:
For $\alpha=5 \%$
$\bar{X}>\mu_{0}+z_{.05} \frac{\sigma}{\sqrt{n}}=0+1.645 \times \frac{2}{5}=0.658$
Power of the test: $=P\left(X>0.658 \mid \mu_{a}=1\right)=P\left(Z>\frac{0.658-1}{2 / \sqrt{25}}=P(Z>-0.855)=0.8051\right.$
For $\alpha=10 \%$
$\bar{X}>\mu_{0}+z_{.1} \frac{\sigma}{\sqrt{n}}=0+1.28 \times \frac{2}{5}=0.512$
Power of the test: $=P\left(X>0.512 \mid \mu_{a}=1\right)=P\left(Z>\frac{0.512-1}{2 / \sqrt{25}}=P(Z>-1.22)=0.8888\right.$
