Second course in Statistics. Lecture 23.

Multiple linear regression

- Model specification and estimation
- Statistical inference
- Residual analysis
- Comparing models: analysis of variance

Multiple linear regression

The statistical model for multiple linear regression is

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\mathrm{L}+\beta_{p} x_{i p}+\varepsilon_{i} \text { for } i=1,2, \mathrm{~L}, n
$$

The mean response μ_{y} is a linear function of the explanatory variables:

$$
\hat{Y}=\mu_{y}=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\mathrm{L}+\beta_{p} x_{p}
$$

This equation describes how the mean of y varies with the x 's. ε_{i} are assumed to be independent and normally distributed with mean 0 and standard deviation σ.
The parameters of the model are $\beta_{0}, \beta_{1}, \mathrm{~L} \beta_{p}$, and σ^{2}.

Estimation

Least squares estimation
The method of least squares chooses the values of $\hat{\beta}_{i}$ that make the sum of squares of the residuals as small as possible. In other words the parameter estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \mathrm{~L} \hat{\beta}_{p}$ minimized the quantity

$$
\Sigma\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i 1}-\hat{\beta}_{2} x_{i 2}-\mathrm{L}-\hat{\beta}_{p} x_{i p}\right)^{2}
$$

The derivation is much more complicated than in simple linear regression.
Estimator of σ^{2} is $s^{2}=\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-p-1}$

Statistical inference

$100(1-\alpha) \%$ Confidence interval for β_{i} is

$$
\hat{\beta}_{i} \pm t_{\alpha / 2}(n-p-1) S E_{b_{j}}
$$

Where $S E_{b_{j}}$ is the standard error of $\hat{\beta}_{i}$
To test the hypothesis:

$$
H_{0}: \beta_{j}=0 \quad j=1, \mathrm{~L} p
$$

t statistic is

$$
t=\hat{\beta}_{j} / S E_{\hat{\beta}_{j}}
$$

Reject H_{0} if $|t|>t_{\alpha / 2}(n-p-1)$

Analysis of variance

For multiple regression, the analysis of variance is very rich technique that is used to divide variability and to compare models that include different sets of variables.
In the overall analysis of variance, the full model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\mathrm{L}+\beta_{p} x_{i p}+\varepsilon_{i}
$$

is compared to the model with no x variables,

$$
y_{i}=\beta_{0}+\varepsilon_{i}
$$

Equivalently:
$H_{0}: \beta_{1}=\beta_{2}=\mathrm{L}=\beta_{p}=0$
H_{0} : at least one of β_{j} is not equal 0

Analysis of variance

Source	d.f.	SS	MS
Variance due to regression model	p	$S S M=\Sigma\left(\hat{y}_{i}-\bar{y}\right)^{2}$	$M S M=\frac{S S M}{p}$
Error (residual)	$n-p-1$	$S S E=\Sigma\left(y_{i}-\hat{y}_{i}\right)^{2}$	$M S E=\frac{S S E}{n-p-1}$
Total	$n-1$	$S S T=\Sigma\left(y_{i}-\bar{y}\right)^{2}$	

Test statistic: $F=\frac{M S M}{M S E}$ with $v_{1}=p$ and $v_{2}=n-p-1$
R.R. Reject H_{0} if $F>F_{\alpha}\left(v_{1}, v_{2}\right)$

Coefficient of determination

Coefficient of determination (a.k.a. squared multiple correlation) is defined

$$
R^{2}=\frac{S S M}{S S T}=\frac{\Sigma\left(\hat{y}_{i}-\bar{y}\right)^{2}}{\sum\left(y_{i}-\bar{y}\right)^{2}}
$$

This statistic is the proportion of the variation of the response variable y that is explained by the explanatory variables $x_{1}, x_{2}, \mathrm{~L} x_{p}$ in a multiple linear regression.

Example

Suppose we had also recorded the age of each student in the sample. Since a company may reward some experience that an older graduate might have, it is possible that the age of a graduate might influence the average starting salary. The data is augmented as the following table:

Salary	18,5	20	21,1	22,4	21,2	15	18	18,8	15,7	14,4	15,5	17,2	19	17,2	16,8
GPA	2,95	3,2	3,4	3,6	3,2	2,85	3,1	2,85	3,05	2,7	2,75	3,1	3,15	2,95	2,75
Age	22	23	23	23	27	22	25	28	23	22	28	22	26	23	26

Example

We include the linear effect of x_{2} in the regression model and fit:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\varepsilon_{i} .
$$

Where Y_{i} is starting salary, x_{1} is GPA and x_{2} is age.
LSE equation: $\hat{Y}_{i}=-16.88+8.74 x_{i 1}+0.338 x_{i 2}$
(5.476) (1.221) (0.137)

The values in bracket are the standard error for the estimated statistics. Test null hypothesis that

$$
\beta_{0}=0, \beta_{1}=0, \beta_{2}=0
$$

Respectively.

Example

According to the estimated equation
(a) Calculate sum of squares due to linear regression $\Sigma\left(\hat{y}_{i}-\bar{y}\right)^{2}$
(b) Calculate sum of squares residual $\Sigma\left(y_{i}-\hat{y}_{i}\right)^{2}$
(c) Estimate variance of random error σ^{2}.

ANOVA $^{\text {b }}$							
		Sum of					
Model		Squares	df	Mean Square	F	Sig.	
1	Regression	66,099	2	33,050	26,130	, $000^{\text {a }}$	
	Residual	15,178	12	1,265			
	Total	81,277	14				

a. Predictors: (Constant), age, GPA
b. Dependent Variable: Salary

Residual analysis

Residual analysis

Histogram of standardized residuals

Example

Test the null hypothesis that $H_{0}: \beta_{1}=\beta_{2}=0$ in regression

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\varepsilon_{i} .
$$

Calculate coefficient of determination under the model

Analyze which one of $Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\beta_{2} x_{i 2}+\varepsilon_{i}$ and $Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\varepsilon_{i}$ is better by
(a) comparing estimate of variance of random error
(b) comparing coefficient of determination
(c) ANOVA
(d) analyzing the residuals

