Second course In Statistics. Lecture 22.

Simple linear regression analysis
- Parameter estimation (2): maximum likelihood estimation (MLE)
- Statistical inference: testing and confidence interval

- Diagnostics: residual analysis




Maximum likelihood estimation

Difference between LSE and MLE:

Least squares estimates were determined without having to specify the
probability distribution of the random errors e. If we are willing to assume
that the e are independent normally distributed random variables with
mean zero and variance s* for all i =1,2,L_,n, it is possble to determine
maximum likelihood estimates of b,, b,and s°.

Express probability distribution function of Y in terms of probability
distribution of e

e ~N(0,s?)

Y-b,- bx ~N(0s?)




Density function of response variables
Joint probability distribution of Y,,Y,,L.,Y IS
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Likelithood function
Likelihood function is therefore given by
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In the joint probability distribution function, Y's are regarded as random
variables, whereasin likelihood function, y 'sare deterministic variables.
For convenience, the maximum likelihood estimates are determined by
maximizing natural log of the likelihood function.
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Maximum likelithood estimation

Taking partial derivatives with respect tob,, b,and s* and equating them
to zero, then




Maximum likelihood estimation

L SE and MLE yield the same estimation for b, and b,, but estimation of
s® isdifferent. MLE of s° isbiased.

Why do we bother with the maximum likelihood estimators since they are
the same as the LS estimators? One of the reasons is that maximum
likelthood estimators possess the desirable properties of consistency,
sufficiency, and minimum variance. In addition, they provide the necessary
means to develop sampling digtribution for b, and b,.




Properties of ML estimators

General properties of estimators of b,,b,and Y

Theorem 1: LS estimators or MLE b and 1; are unbiased estimators

of bandb,, i.e. E?i%: b, and E?SJO%: b,

U

Definition: Best linear unbiased estimators (BLUE): 1;0 and b, are

unbiased estimators of b, and b,. If among these unbiased estimators of
b, and b, thereexist estimators whose variances are smaller than those of
any other unbiased estimators of b, and b,, then these are the best linear
unbiased estimators (BLUE) of b, and b,.




Properties of ML estimators

U

Theorem 2: b, and b : . shown as above are the best linear unbiased
estlmatorsof b, and b

Var?y g—— or equivalently sd?p 0=_°  and

ﬁ

Theorem 3:Yi is unbiased estimator of E(Y), i.e. E?(O E(Y) and
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Sampling distribution of estimators in simple linear model

U

We have calculated the means and variances ofb b, andY what are

their sampling distributions?
Recall:

e isi.i.d. n(0,s*) for i =1,2,L_,n

ol
a|1 y_
s’ isestimated by s = @ g _ >
n- 2 n-2

Firstdefines?glézﬁ , s?i%:s }+§— and y 0 \/1+(X' X)




Sampling distribution of estimators in simple linear model

Sampling distribution of ?31- blgl s?glé—‘ls Student’s t with n- 2 degrees
of freedom.

Sampling distribution of @ b%/s?yk_@ s Sudent's t with n- 2
degrees of freedom.

Sampling distribution o §( EYQQ/@QQ s Student's t with n- 2

degrees of freedom.
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Confidence interva estimation

Confidenceinterval for b, with confidence coefficient 1- a

U

bt (n-2) L‘JQ,andtisbasedondegreeoffreedom n- 2.

0= "al2 OQ
Confidence interval for b, with confidence coefficient 1- a
lglita,z(n- 2)>e§;1%, and t is based on degree of freedom n- 2.
Confidence interval for Y with confidence coefficient 1- a

\L‘(Jiita,2 %?329 and t is based on degree of freedom n- 2.
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Example

u

U

U

Construct 95% confidence interval for b,, b, and Y in salary and GPA

example.

Compare the above results with the SPSS regression coefficients.

Coefficient8

Unstandardized Standardized
Coefficients Coefficients 5% Confidence Interval for H
Model B Std. Error Beta t Sig. Lower Bound |Upper Bound
1 (Constant)] -6,627 4,298 -1,542 ,147 -15,913 2,659
GPA 8,119 1,409 ,848 5,760 ,000 5,074 11,163

a. Dependent Variable: Salary
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Salary against GPA (least square esimation line)

Example
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Standardized Residual

Residual analysis

Residual plot (Behavior of residuals ought to satisfiy the assumption of

independence.)
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Frequency

Residual analysis

Residual histogram with normal curve
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Standardized Residual

Mean =4,1494586E-15
Std. Dev. =0,96362411
N =15
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