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Second course in Statistics. Lecture 21.

Linear regression analysis

•Model specification

•Assumptions

•Parameter estimation: least squares method and maximum
likelihood estimation (MLE)

•Statistical inference: testing and confidence interval

•Diagnostics
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Introduction
Regression is used to study relationships between variables. Linear
regression is used for a special class of relationships, namely, those that can
be described by straight lines, or by generalizations of straight lines to
many dimensions.
One variable takes on the special role of a response variable, while all the
others are viewed as predictor variables as having values set by the data
collector. The value of the response is a function of predictors. A
hypothesized model specifies the behaviour of the response given values of
the predictors.
The model generally also specifies some of the characteristics of the failure
to provide exact fit through hypothesized error terms.
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Linear relationship
The word 'linear' means that the selected model is linear in the parameters.
The phrase 'linear in the parameters' means that no parameter in the model
appears as an exponential or is multiplied by or divided by another
parameter.

Example: Which of the followings show linear relationship?
1) ,εββ ++= xY 10

2) ,εβββ +++= 2

210 xxY
3) ,( ) εββ ++= xY ln10

4) ,εββββ ++++= 21322110 xxxxY
5) ( ) εββ += xY 10 exp
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Simple linear regression
Definition: When there is a single predictor variable and the regression
equation is assumed to be a linear function, this model is called simple
linear model. Simple linear model has the form:

iii xY εββ ++= 10 ni ,,2,1 ⋯=

is the intercept, the value of when0β iY 0=ix
is the slope, the rate of change in for a unit change in1β iY ix
is a random error term, the difference between observed andiε iY

predicted . These statistical errors are devices that account forii xY 10 ββ +=
∧

the failure of a model to provide an exact fit.
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Assumptions
1. The values predicted are the expected values (average values) at given
predictors.

2. The response variable is random variable whose values are observed by
selecting values of the predictor variables in a desired range.

3. The predictor variables are a set of fixed values representing points of
observation for the response variable.

4. The variability in the response variable that cannot be accounted for by
the equation is due to random error . ,iε ni ⋯,2,1= ( ) 0=iE ε ( ) 0,cov =ji εε

for and for .ji ≠ ( ) 2var σε =i ni ⋯,2,1=
5. Further for is imposed for the inference of( )2,0~ σε NIDi ni ⋯,2,1=
distribution of the estimators.
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Least squares estimation
Definition: Least squares method (LS) finds estimate for the parameters in
the selected equation by minimizing the sum of the squared deviations of
the observed values of the response variable from those predicted by the
equation. These values are known as the least squares estimates (LSE) of the
parameters.

Minimize
2
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Least squares estimation

Estimated regression line is ii xY
∧∧∧

+= 10 ββ

is the value on the fitted line at
∧

iy ixx =

Alternative form for estimated regression line: ( )xxYY ii −+=
∧∧

1β

The estimated errors (a.k.a. residuals)
∧

−= iii yye
The residuals give the vertical distances between the fitted line and the
actual y-values.
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Least squares estimation
Properties of the least squares estimators
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Least squares estimation
Estimation of variance 2σ
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is called the residual variance, or mean square error (MSE), and the2s
positive square root s is called the residual standard deviation. is an2S
unbiased estimator of .2σ

The residual variance is an absolute measure of how well the estimated2s
regression line fits the means of the observed response variables. In general
the smaller this value, the better the fit.
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Least squares estimation

Explanations of variability of response variable

It can be shown that ( )
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variability explained by the regression model.



11

Example 1
University students learn rather quickly that the better their grade point
averages (GPA), the better their chances of finding good jobs upon
graduation. Suppose the data are listed in table 1 represent the GPA of 15
recent graduates and their starting annual salaries. We choose starting
salaries as response and GPA as predictor. Determine a regression equation
for average starting salary as a function of GPA and estimate the parameters
in the model specified.
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Table 1 (salaries in thousands of dollars)
GPA Starting salary
2,95 18,5
3,20 20,0
3,40 21,1
3,60 22,4
3,20 21,2
2,85 15,0
3,10 18,0
2,85 18,8
3,05 15,7
2,70 14,4
2,75 15,5
3,10 17,2
3,15 19,0
2,95 17,2
2,75 16,8


