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properties that cover the most common types of complex sampling designs and
nonlinear estimators.

Approximative variance estimators can be used for variance estimation of a
nonlinear estimator. These variance estimators are not sampling-design-specific,
unlike those for linear estimators. Approximative variance estimators are flexible
so that they can be applied for different kinds of nonlinear estimators, including
the ratio estimator, under a variety of multi-stage designs covering all the different
real sampling designs selected for this book. We use the linearization method as
the basic approximation method. Alternative methods are based on sample reuse
techniques such as balanced half-samples, jackknife and bootstrap. Approximative
techniques for variance estimation are available in statistical software products
for variance estimation in complex surveys.

Certain simplifying assumptions are often made when using approximative
variance estimators. In variance estimation under a multi-stage design, each
sampling stage contributes to the total variance. For example, under a two-stage
design, an analytical variance estimator of a population total is composed of a
sum of the between-cluster and within-cluster variance components as shown in
Section 3.2. In the simplest use of the approximation methods, a possible multi-
stage design is reduced to a one-stage design, and the clusters are assumed to be
drawn with replacement. Variances are then estimated using the between-cluster
variation only. In more advanced uses of the approximation techniques, the
variation of all the sampling stages can be properly accounted for.

5.3 LINEARIZATION METHOD

Linearization Method for a Nonlinear Estimator

In estimating the variance of a general nonlinear estimator, denoted by θ̂ , we adopt
a method based on the so-called Taylor series expansion. The method is usually
called the linearization method because we first reduce the original nonlinear
quantity to an approximate linear quantity by using the linear terms of the
corresponding Taylor series expansion, and then construct the variance formula
and an estimator of the variance of this linearized quantity.

Let an s-dimensional parameter vector be denoted by Y = (Y1, . . . , Ys)
′ where

Yj are population totals or means. The corresponding estimator vector is denoted
by Ŷ = (Ŷ1, . . . , Ŷs)

′ where Ŷj are estimators of Yj. We consider a nonlinear
parameter θ = f (Y) with a consistent estimator denoted by θ̂ = f (Ŷ). A simple
example is a subpopulation mean parameter θ = Y = Y1/Y2 with a ratio estimator
θ̂ = y = Ŷ1/Ŷ2 = y/x, where y = ∑H

h=1

∑mh
i=1 yhi is the subgroup sample sum of

the response variable and x = ∑H
h=1

∑mh
i=1 xhi is the subgroup sample size, both

regarded as random quantities.
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Suppose that for the function f (y), continuous second-order derivatives exist in
an open sphere containing Y and Ŷ. Using the linear terms of the Taylor series
expansion, we have an approximative linearized expression,

θ̂ − θ
.=

s∑
j=1

∂f (Y)

∂yj
(Ŷj − Yj), (5.3)

where ∂f (Y)/∂yj refers to partial derivation. Using the linearized equation (5.3),
the variance approximation of θ̂ can be expressed by

V(θ̂ )
.= V


 s∑

j=1

∂f (Y)

∂yj
(Ŷj − Yj)


 =

s∑
j=1

s∑
l=1

∂ f (Y)

∂yj

∂ f (Y)

∂yl
V(Ŷj, Ŷl), (5.4)

where V(Ŷj, Ŷl) denote variances and covariances of the estimators Ŷj and Ŷl.
We have hence reduced the variance of a nonlinear estimator θ̂ to a function
of variances and covariances of s linear estimators Ŷj. A variance estimator v̂(θ̂ )

is obtained from (5.4) by substituting the variance and covariance estimators
v̂(Ŷj, Ŷl) for the corresponding parameters V(Ŷj, Ŷl). The resulting variance
estimator is a first-order Taylor series approximation where justification for
ignoring the remaining higher-order terms is essentially based on practical
experience derived from various complex surveys in which the sample sizes have
been sufficiently large.

As an example of the linearization method, let us consider further a ratio
estimator. The parameter vector is Y = (Y1, Y2)

′ with the corresponding estimator
vector Ŷ = (Ŷ1, Ŷ2)

′. The nonlinear parameter to be estimated is θ = f (Y) =
Y1/Y2, and the corresponding ratio estimator is θ̂ = f (Ŷ) = Ŷ1/Ŷ2. The partial
derivatives are

∂f (Y)/∂y1 = 1/Y2 and ∂f (Y)/∂y2 = −Y1/Y2
2 .

Hence we have

V(θ̂ )
.=

2∑
j=1

2∑
l=1

∂f (Y)

∂yj

∂f (Y)

∂yl
V(Ŷj, Ŷl)

= 1
Y2

1
Y2

V(Ŷ1) + 1
Y2

(
− Y1

Y2
2

)
V(Ŷ1, Ŷ2)

+
(

− Y1

Y2
2

)
1

Y2
V(Ŷ2, Ŷ1) +

(
− Y1

Y2
2

) (
− Y1

Y2
2

)
V(Ŷ2)

= (1/Y2
2)(V(Ŷ1) + θ2V(Ŷ2) − 2θV(Ŷ1, Ŷ2))

= θ2(Y−2
1 V(Ŷ1) + Y−2

2 V(Ŷ2) − 2(Y1Y2)
−1V(Ŷ1, Ŷ2)). (5.5)
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Basic principles of the linearization method for variance estimation of a non-
linear estimator under complex sampling are due to Keyfitz (1957) and Tepping
(1968). Woodruff (1971) suggested simplified computational algorithms for the
approximation by transforming an s-dimensional situation to a one-dimensional
case. A good reference for the method is Wolter (1985). The linearization method
can also be used for more complex nonlinear estimators such as correlation and
regression coefficients. The linearization method is used in most survey analysis
software products for variance estimation of ratio estimators and for more compli-
cated nonlinear estimators. We next consider the estimation of the approximative
variance of a ratio estimator using the linearization method.

Linearization Method for a Combined Ratio Estimator

A variance estimator of the ratio estimator r̂ = y/x = ∑H
h=1

∑mh
i=1 yhi/∑H

h=1

∑mh
i=1 xhi given by (5.1) should, according to equation (5.5), include the

following terms: first, a term accounting for cluster-wise variation of the subgroup
sample sums yhi, second, a term accounting for cluster-wise variation of the
subgroup sample sizes xhi, and finally, a term accounting for joint cluster-wise
variation of the sample sums yhi and xhi, i.e. their covariance. A variance estima-
tor of r̂ can thus be obtained from equation (5.5) by substituting the estimators
v̂(y), v̂(x) and v̂(y, x) for the corresponding variance and covariance terms V(y),
V(x) and V(y, x). Hence we have

v̂des(r̂) = r̂2(y−2v̂(y) + x−2v̂(x) − 2(yx)−1v̂(y, x)), (5.6)

as the design-based variance estimator of r̂ based on the linearization method,
where v̂(y) is the variance estimator of the subgroup sample sum y, v̂(x) is the
variance estimator of the subgroup sample size x, and v̂(y, x) is the covariance
estimator of y and x.

The variance estimator (5.6) is consistent if the estimators v̂(y), v̂(x) and
v̂(y, x) are consistent. The cluster sample sizes xhi should not vary too much
for the reliable performance of the approximation based on the Taylor series
expansion. The method can be safely used if the coefficient of variation of
xhi is less than 0.2. If the cluster sample sizes are equal, the variance and
covariance terms v̂(x) and v̂(y, x) are zero and the variance approximation
reduces to v̂des(r̂) = v̂(y)/x2. And for a binary response from simple random
sampling with replacement, this variance estimator reduces to the binomial
variance estimator v̂des(p̂) = v̂bin(p̂) = p̂(1 − p̂)/x, where x = n, the size of the
available sample data set.

The variance estimator (5.6) is a large-sample approximation in that a good
variance estimate can be expected if not only a large element-level sample is
available but a large number of sample clusters is also present. In the case of a
small number of sample clusters, the variance estimator can be unstable; this will
be examined in Section 5.7.
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Strictly speaking, the variance and covariance estimators in (5.6) depend on
the actual sampling design. But assuming that at least two sample clusters are
drawn from each stratum and by using the with-replacement assumption, i.e.
assuming that clusters are drawn independently of each other, we obtain relatively
simple variance and covariance estimators, which can be generally applied for
multi-stage stratified epsem samples:

v̂(y) =
H∑

h=1

mhŝ2
yh, v̂(x) =

H∑
h=1

mhŝ2
xh

and

v̂(y, x) =
H∑

h=1

mhŝyxh,

where

ŝ2
yh =

mh∑
i=1

(yhi − yh/mh)
2/(mh − 1),

ŝ2
xh =

mh∑
i=1

(xhi − xh/mh)
2/(mh − 1),

and

ŝyxh =
mh∑
i=1

(yhi − yh/mh)(xhi − xh/mh)/(mh − 1). (5.7)

Note that by using the with-replacement approximation, only the between-cluster
variation is accounted for. Therefore, the corresponding variance estimators
underestimate the true variance. This bias is negligible if the stratum-wise first-
stage sampling fractions are small, which is the case when there are a large
number of population clusters in each stratum (see Section 3.2).

For the estimation of the between-cluster variance, at least two sample clusters
are needed. If the sampling design is such that exactly two clusters are drawn
from each stratum, the estimators (5.7) can be further simplified:

v̂(y) =
H∑

h=1

(yh1 − yh2)
2, v̂(x) =

H∑
h=1

(xh1 − xh2)
2

and

v̂(y, x) =
H∑

h=1

(yh1 − yh2)(xh1 − xh2). (5.8)
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Covariance-matrix Estimation

The unknown population covariance matrix V/n of the ratio estimator vector
p̂ has u rows and u columns, thus it is a u × u matrix. V/n is symmetric such
that the lower and upper triangles of the matrix are identical. Variances of the
domain ratio estimators are placed on the main diagonal of V/n and covariances
of the corresponding domain ratio estimators on the off-diagonal part of the
matrix. There is a total of u × (u + 1)/2 distinct parameters in V/n that need to
be estimated.

The variance and covariance estimators v̂des(r̂j) and v̂des(r̂j, r̂l), being respec-
tively the diagonal and off-diagonal elements of a consistent covariance-matrix
estimator V̂des of the asymptotic covariance matrix V/n of the ratio estimator
vector r̂ = (r̂1, . . . , r̂u)

′, are derived using the linearization method considered in
Section 5.3. The variance and covariance estimators of the sample sums yj and
xj in a variance estimator v̂des(r̂j) of r̂j = yj/xj, and the covariance estimators of
the sample sums yj, yl, xj and xl in the covariance estimators v̂des(r̂j, r̂l) of r̂j and
r̂l in separate domains, are straightforward generalizations of the corresponding
variance and covariance estimators given in Section 5.3 for the variance estimator
of a single ratio estimator r̂. We therefore do not show these formulae.

Like the scalar case, the variance and covariance estimators of r̂j and r̂l are
based on the with-replacement assumption and the variation accounted for is the
between-cluster variation. This causes bias in the estimates, but the bias can be
assumed to be negligible if the first-stage sampling fraction is small.

The variance and covariance estimators of yj, xj, yl and xl are finally collected
into the corresponding u × u covariance-matrix estimators V̂yy, V̂xx and V̂yx.
Using these estimators, the design-based covariance-matrix estimator of r̂ based
on the linearization method is given by

V̂des = diag(r̂)(Y−1V̂yyY−1 + X−1V̂xxX−1

− Y−1V̂yxX−1 − X−1V̂xyY−1)diag(r̂), (5.35)

where

diag (r̂) = diag (r̂1, . . . , r̂u) = diag (y1/x1, . . . , yu/xu)
Y = diag (y) = diag (y1, . . . , yu)
X = diag (x) = diag(x1, . . . , xu)
V̂yy is the covariance-matrix estimator of the sample sums yj and yl

V̂xx is the covariance-matrix estimator of the sample sums xj and xl

V̂yx is the covariance-matrix estimator of the sums yj and xl, and
V̂xy = V̂′

yx

and the operator ‘diag’ generates a diagonal matrix with the elements of the
corresponding vector as the diagonal elements and with off-diagonal elements
equal to zero. Note that in a linear case, all elements of the covariance-matrix
estimators V̂xx, V̂yx and V̂xy are zero.
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In the estimation of the elements of V̂des, at least two clusters are assumed to be
drawn with replacement from each of the H strata. In the special case of mh = 2
clusters routinely used in survey sampling, the estimators can be simplified in a
manner similar to that done in Section 5.3.

As a simple example, let the number of domains be u = 2. The elements of the
covariance-matrix estimator

V̂des =
[

v̂des(r̂1) v̂des(r̂1, r̂2)

v̂des(r̂2, r̂1) v̂des(r̂2)

]

are the following:
Variance estimator:

v̂des(r̂j) = r̂2
j (y−2

j v̂(yj) + x−2
j v̂(xj) − 2(yjxj)

−1v̂(yj, xj)), j = 1, 2.

Covariance estimator:

v̂des(r̂1, r̂2) = r̂1r̂2((y1y2)
−1v̂(y1, y2) + (x1x2)

−1v̂(x1, x2)

− (y1x2)
−1v̂(y1, x2) − (y2x1)

−1v̂(y2, x1)).

The estimator v̂des(r̂2, r̂1) is equal to v̂des(r̂1, r̂2) because of symmetry of V̂des. If the
estimators r̂j are taken as linear estimators, then the denominators xj are assumed
fixed. In this case, the variance and covariance estimates v̂(xj) and v̂(yj, xj) are
zero, and v̂des(r̂j) = v̂(yj)/x2

j . And for a binary response in the binomial case, this
estimator reduces to v̂bin(p̂j) = p̂j(1 − p̂j)/nj.

It is important to note that V̂des is distribution-free so that it requires no
specific distributional assumptions about the sampled observations. This allows
an estimate V̂des to be nondiagonal. The nondiagonality of V̂des is because the
ratio estimators r̂j and r̂l from distinct domains can have nonzero correlations.
In contrast, the binomial covariance-matrix estimators considered in this section
have zero correlation by definition.

One source of nonzero correlation of the estimators r̂j and r̂l from separate
domains comes from the clustering of the sample. Varying degrees of correlation
can be expected depending on the type of the domains. If the domains cut smoothly
across the sample clusters, distinct members in a given sample cluster may fall in
separate domains j and l such as cross-classes like demographic or related factors.
Large correlations can then be expected if the clustering effect is noticeable. In
contrast, if the domains are totally segregated in such a way that all members
of a given sample cluster fall in the same domain, zero correlations of distinct
estimates r̂j and r̂l are obtained. This happens if the predictors used in forming
the domains are cluster-specific unlike cross-classes where factors are essentially
individual-specific. If, for example, households are clusters, typical cluster-specific
factors are net income of the household and family size, whereas age and sex of a
family member are individual-specific. Mixed-type domains, often met in practice,
are intermediate, so that nonzero correlations are present in some dimensions of
the table with zero correlations in the others.
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another. Obviously, in self-weighting samples both approaches should yield equal
design-effect estimates.

It should be noted that, in the design-effects matrix estimator (5.37) only the
contribution of the clustering is accounted for, because a binomial covariance-
matrix estimator of the consistent weighted proportion estimator vector is used.
By using in (5.37) a binomial covariance-matrix estimator of the unweighted
proportion estimator vector instead of that of the weighted proportion estimator
vector, all the contributions of complex sampling on covariance-matrix estimation
are reflected, such as unequal inclusion probabilities, clustering and adjustment
for nonresponse. Obviously, both approaches give similar design-effect matrix
estimates when working with self-weighting samples. If adopting as a rule the use
of a consistent proportion estimator p̂, then working with weighted observations,
and thus with (5.37) would be reasonable. Then, the crucial role of adjusting for
the clustering effect in the analysis of complex surveys would also be emphasized.
However, the calculation of the deff matrix estimate by using both versions of the
binomial covariance-matrix estimate can be useful in assessing the contribution
of weighting to the design effects.

Example 5.5

Covariance-matrix and design-effects matrix estimation with the linearization
method. Using the OHC Survey data we carry out a detailed calculation of
the covariance-matrix estimate V̂des of a proportion estimate p̂ of the binary
response PHYS (physical health hazards of work), and of a mean estimate y of the
continuous response PSYCH (the first standardized principal component of nine
psychic symptoms), in the simple case of u = 2 domains formed by the variable
sex. V̂des is thus a 2 × 2 matrix, and the domains are of a cross-class type. A part of
the data set needed for the covariance-matrix estimation is displayed in Table 5.9.
Note that these data are cluster-level, consisting of m = 250 clusters in five strata.
Thus, the degrees of freedom f = 245. The employee-level sample size is n = 7841.

The ratio estimator is r̂ = (r̂1, r̂2)
′ = (y1/x1, y2/x2)

′, where r̂1 and r̂2 are given
by (5.34). For the binary response PHYS, we denote the ratio estimator as
p̂ = (p̂1, p̂2)

′, and for the continuous response PSYCH y = (y1, y2)
′. The following

figures for PHYS are calculated from Table 5.9.
Sums of the cluster-level sample sums yjhi(= yji) and xjhi(= xji):

n̂11 = y1 = 2061 and n̂1 = x1 = 4485 (males),

n̂21 = y2 = 650 and n̂2 = x2 = 3356 (females).

Proportion estimates for PHYS, i.e. the elements of p̂ = (p̂1, p̂2)
′:

p̂1 = y1/x1 = 2061/4485 = 0.4595 (males),
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Table 5.9 Cluster-level sample sums y1i (males) and y2i (females) of the response variables
PHYS and PSYCH with the corresponding cluster sample sizes x1i (males) and x2i (females)
in sample clusters i = 1, . . . , 250 in two domains formed by sex (the OHC Survey).

Stratum Cluster
PHYS PSYCH

h i y1i y2i y1i y2i x1i x2i

2 1 11 3 −0.1434 −0.0322 36 22
2 2 18 4 −0.1925 0.1867 57 21
2 3 4 5 0.0045 0.3674 9 15
2 4 2 2 0.7135 −0.3679 12 15
2 5 1 0 −0.1681 0.1235 27 8
2 6 1 0 −0.2673 0.1504 19 21
2 7 9 4 0.0099 0.2099 23 27
2 8 4 2 0.3681 0.0155 16 31
2 9 0 0 −0.5033 0.0755 6 6
2 10 3 0 −0.3176 −0.2516 8 8
2 11 2 7 0.9746 0.1903 6 67
2 12 7 3 −0.3361 0.5572 22 31
2 13 4 1 −0.2329 −0.2181 9 7
2 14 0 0 −0.2032 0.5893 13 16
2 15 1 23 0.4137 0.2565 4 56
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..

6 245 14 2 0.1984 −0.4271 23 7
6 246 2 1 −0.1049 0.3905 7 7
6 247 4 7 −0.2961 0.5018 7 13
6 248 0 1 −0.8073 0.9278 3 9
6 249 2 0 0.0006 −0.3484 16 13
6 250 13 1 −0.1273 −0.1466 26 4

Total sample 2061 650 −26.7501 33.7983 4485 3356

and
p̂2 = y2/x2 = 650/3356 = 0.1937 (females).

We next construct the diagonal 2 × 2 matrices diag(p̂), Y and X for the
calculation of the estimate V̂des for the PHYS proportion estimator p̂:

diag(p̂) =
[

0.4595 0
0 0.1937

]
, Y =

[
2061 0

0 650

]

and

X =
[

4485 0
0 3356

]
.
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The covariance-matrix estimates V̂yy, V̂xx and V̂yx, also obtained from the cluster-
level data displayed in Table 5.9, are the following:

V̂yy =
[

15 722.50 −130.45
−130.45 3261.71

]
,

V̂xx =
[

34 560.23 −7315.43
−7315.43 34 099.04

]
,

and

V̂yx =
[

18 973.88 −5907.69
−1098.11 6051.14

]
= V̂′

xy.

By using these matrices we finally calculate for PHYS proportions the covariance-
matrix estimate V̂des given by (5.35). Hence we have

V̂des =
[

v̂des(p̂1) v̂des(p̂1, p̂2)

v̂des(p̂2, p̂1) v̂des(p̂2)

]
= 10−4

[
2.775 0.576
0.576 1.951

]
.

For example, using the estimates calculated, the variance estimate v̂des(p̂1) is
obtained as

v̂des(p̂1) = 0.45952 × (2061−2 × 15 722.50 + 4485−2 × 34 560.23

− 2 × (2061 × 4485)−1 × 18 973.88) = 0.2775 × 10−3.

Correlation of p̂1 and p̂2 is 0.25, which is quite large and indicates that the domains
actually constitute cross-classes. The condition number of V̂des is cond(V̂des) = 1.9,
indicating stability of the estimate owing to a large f and small u.

For PSYCH, the following figures are calculated from Table 5.9.
Sums of the cluster-level sample sums yjhi and xjhi:

y1 = −26.7501 and x1 = 4485 (males),

y2 = 33.7983 and x2 = 3356 (females).

Mean estimates for PSYCH, i.e. the elements of y = (y1, y2)
′:

y1 = y1/x1 = −0.1008 (males),

and
y2 = y2/x2 = 0.1347 (females).
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The diagonal 2 × 2 matrices diag(y), Y and X are constructed in the same way as
for PHYS. The covariance-matrix estimate V̂xx is equal to that for PHYS, and the
covariance-matrix estimates V̂yy and V̂yx are:

V̂yy =
[

6765.34 1036.34
1036.34 6585.20

]
,

V̂yx =
[ −3139.98 2129.01

−2051.46 2259.73

]
= V̂′

xy.

By using these matrices we calculate for PSYCH means the covariance-matrix
estimate V̂des:

V̂des =
[

v̂des(y1) v̂des(y1, y2)

v̂des(y2, y1) v̂des(y2)

]
= 10−4

[
3.223 0.427
0.427 5.856

]
.

Results from the design-based covariance-matrix estimation for PHYS propor-
tions and PSYCH means including the standard-error estimates s.edes(r̂j) are
displayed below.

PHYS PSYCH

j Domain p̂j s.edes(p̂j) yj s.edes(yj) n̂j

1 Males 0.460 0.0167 −0.1008 0.0180 4485
2 Females 0.194 0.0140 0.1347 0.0242 3356

Total sample 0.346 0.0144 0.0000 0.0158 7841

Variance and covariance estimates V̂yy, V̂xx and V̂yx can be calculated using
the cluster-level data set displayed in Table 5.9 by suitable software for correlation
analysis. The matrix operations in the formula of V̂des can be executed by any
suitable software for matrix algebra. In practice, however, it is convenient to esti-
mate V̂des using an element-level data set using appropriate software for survey
analysis. Generally, in the case of u domains formed by several categorical predic-
tors, a linear ANOVA model can be used by fitting, with an appropriate sampling
design option, for the response variable, a full-interaction model excluding the
intercept. The model coefficients are then equal to the domain proportion or mean
estimates, and the covariance-matrix estimate of the model coefficients provides
the covariance-matrix estimate V̂des of the proportions or means.

We next calculate the design-effects matrix. For this, a binomial covariance-
matrix estimate is needed.

For PHYS, by computing the elements of the binomial covariance-matrix
estimate

V̂bin(p̂) =
[

v̂bin(p̂1) 0
0 v̂bin(p̂2)

]
=

[
p̂1(1 − p̂1)/n̂1 0

0 p̂2(1 − p̂2)/n̂2

]
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of the proportion vector p̂ we obtain

p̂1(1 − p̂1)/n̂1 = 0.4595(1 − 0.4595)/4485 = 0.0000554 (males),

and

p̂2(1 − p̂2)/n̂2 = 0.1937(1 − 0.1937)/3356 = 0.0000465 (females).

Inserting these variance estimates in V̂bin we have

V̂bin(p̂) = 10−4
[

0.554 0
0 0.465

]
.

It is important to note that the covariance-matrix estimate V̂bin is diagonal because
the proportion estimates p̂1 and p̂2 are assumed to be uncorrelated. The effect of
clustering is not accounted for, even in the variance estimates, in the estimate V̂bin.
Therefore, with positive intra-cluster correlation, the binomial variance estimates
v̂bin(p̂j) tend to be underestimates of the corresponding variances. This appears
when calculating the design-effects matrix estimate D̂ = V̂−1

binV̂des of the estimate p̂:

D̂(p̂) =
[

18 058.295 0
0 21 489.421

]
× 10−4

[
2.775 0.576
0.576 1.951

]

=
[

5.01 1.04
1.24 4.19

]
.

The design-effect estimates d̂j on the diagonal of D̂ are thus

d̂(p̂1) = v̂des(p̂1)/v̂bin(p̂1) = 0.0002775/0.0000554 = 5.01 (males),

and

d̂(p̂2) = v̂des(p̂2)/v̂bin(p̂2) = 0.0001951/0.0000465 = 4.19 (females).

These estimates are quite large, indicating a strong clustering effect for the
response PHYS. This results in severe underestimation of standard errors of the
estimates p̂j when the binomial covariance-matrix estimate V̂bin is used. In addition
to the design-effect estimates, the eigenvalues of the design-effect matrix, i.e. the
generalized design effects, can be calculated. These are δ̂1 = 5.81 and δ̂2 = 3.39. It
may be noted that the sum of the design-effect estimates is 9.20, which is equal
to the sum of the eigenvalues. The mean of the design-effect estimates is 4.60,
which indicates a strong average clustering effect over the sex groups. However,
the mean is noticeably smaller than the overall design-effect estimate d̂ = 7.2
for the proportion estimate p̂ calculated from the whole sample. This is due to
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the property of design-effect estimates that, when compared against the overall
design-effect estimate, they tend to get smaller in cross-class-type domains.

Estimation results for PHYS proportions are collected below.

j Domain p̂j s.edes s.ebin d̂j n̂j

1 Males 0.460 0.0167 0.0074 5.01 4485
2 Females 0.194 0.0140 0.0068 4.19 3356

Total sample 0.346 0.0144 0.0054 7.17 7841

5.8 CHAPTER SUMMARY AND FURTHER READING

Summary

Proper estimation of the variance of a ratio estimator is important in the analysis
of complex surveys. First, variance estimates are needed to derive standard errors
and confidence intervals for nonlinear estimators such as a ratio estimator.
The estimation of the variance of ratio mean and ratio proportion estimators was
carried out under an epsem two-stage stratified cluster-sampling design, where the
sample data set was assumed self-weighting so that adjustment for nonresponse
was not necessary. The demonstration data set from the modified sampling design
of the Mini-Finland Health Survey (MFH Survey) fulfilled these conditions.

A ratio-type estimator r̂ = y/x was examined for the estimation of the subpop-
ulation mean and proportion in the important case of a subgroup of the sample
whose size x was not fixed by the sampling design. Therefore, the denominator
quantity x in r̂ is a random variable, involving its own variance and covariance
with the numerator quantity y. In addition to the variance of y, these variance
and covariance terms contributed to the variance estimator of a ratio estimator
calculated with the linearization method. This method was considered in depth
because of its wide applicability in practice and popularity in software products
for survey analysis.

We also introduced alternative methods for variance estimation of a ratio
estimator based on sample reuse methods. The techniques of balanced half-
samples (BRR) and jackknife (JRR) are traditional sample reuse methods, but
the bootstrap (BOOT) has been applied for complex surveys only recently. Being
computer-intensive, they differ from the linearization technique but are, as such,
readily applicable for different kinds of nonlinear estimators. With-replacement
sampling of clusters was assumed for all the approximation methods. With this
assumption, the variability of a ratio estimate was evaluated using the between-
cluster variation only, leading to relatively simple variance estimators. The design
effect was used extensively as a measure of the contribution of the clustering on
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