Introduction to $\mathrm{LT}_{\mathrm{E}} \mathrm{X}$
 Exercises 2 (Group 5)

Clifford Gilmore

16th March 2011

The .tex file containing your solutions to this exercise sheet should be emailed to clifford.gilmore@helsinki.fi before 15:00 on 22nd March.

1. Create a document titled, $L^{A} T_{E} X$ Solutions 2 , with you as the author.
2. Create a section called, My First Table, and in this section add the below table.

	Height (cm)	Age (years)
Ian	180	22
Michelle	172	31

3. Create a new section titled, Real and Fourier Analysis. Define your own theorem structure with the newtheorem command and then use it to state the below theorem.

Let $K=\{(x, y) \in \mathbb{R}: 0 \leq x \leq 1$ and $0 \leq y \leq x\}$ and let $f: K \rightarrow \mathbb{R}$ be an integrable function. Then

$$
\int_{K} f d m_{2}=\int_{[0,1]}\left(\int_{[0, x]} f(x, y) d m_{1}(y)\right) d m_{1}(x)=\int_{[0,1]}\left(\int_{[y, 1]} f(x, y) d m_{1}(x)\right) d m_{1}(y)
$$

4. Using the proof environment accessed through the amsthm package, add a proof for the above theorem. (You don't need to give the real proof, any paragraph of text will do)
5. Add a subsection called Fourier Analysis to the section and reproduce the below text in your document. (Hint: create a Question structure with the newtheorem command and use the eqnarray environment to align the calculations)

Question 3.1. Let $f(0)=|\theta|, \theta \in[-\pi, \pi]$. Prove that $\hat{f}(0)=\frac{\pi}{2}$ and

$$
\hat{f}(n)=\frac{-1+(-1)^{n}}{\pi n^{2}}, \quad n \neq 0
$$

Proof. It is easily seen that

$$
\hat{f}(0)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|\theta| \mathrm{d} \theta=\frac{1}{\pi} \int_{0}^{\pi} \theta \mathrm{d} \theta=\frac{\pi}{2}
$$

Next, for non-zero integers n we have,

$$
\begin{aligned}
\hat{f}(n) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}|\theta| e^{-i n \theta} \mathrm{~d} \theta \\
& =\frac{1}{\pi} \int_{0}^{\pi} \theta \cos n \theta \mathrm{~d} \theta \\
& =\frac{1}{\pi}\left(\left[\frac{\theta \sin n \theta}{n}\right]_{0}^{\pi}-\frac{1}{n} \int_{0}^{\pi} \sin n \theta \mathrm{~d} \theta\right) \\
& =-\frac{1}{n \pi}\left[-\frac{\cos n \theta}{n}\right]_{0}^{\pi} \\
& =\frac{\cos n \pi-1}{\pi n^{2}} \\
& =\frac{(-1)^{n}-1}{\pi n^{2}}= \begin{cases}0 & \text { if } 2 \mid n \\
-\frac{2}{\pi n^{2}} & \text { if } 2 \nmid n\end{cases}
\end{aligned}
$$

