LIST OF mathematical CORRECTIONS

p.3-10: such that $f_{\eta \upharpoonright (i+1)}(a_i) = f_{\eta \upharpoonright i}(b_i)$ (or $f_{\eta \upharpoonright (i+1)}(b_i) = f_{\eta \upharpoonright i}(a_i)$) and... p.4+2: ...and $\neg \phi(x,b) \in p$. p.4+5: $\cup_{j < i} (c_j \cup d_j)$. Since... p.14-3: The hint for Exercise 4.11 (vi) seems to be insufficient: First proof Theorem 5.5 e.g. as follows:

Suppose not. Then choose a_i, b_i , $i < \xi = ((|A| + 2)^{|T|})^+$ so that $t(a_i \cup b_i, A) = t(a \cup b, A)$, $b_i \downarrow_A \bigcup_{j < i} (a_j \cup b_j)$ and $a_i \downarrow_A b_i \cup \bigcup_{j < i} (a_j \cup b_j)$. Then by (Exercise 2.3 (iii), Lemma 2.4 and) Theorem 3.3, there is $I \subseteq \xi$ of power ξ such that $\{a_i \cup b_i | i \in I\}$ is indiscernible over A. Choose j < i from I and $f \in Aut(\mathbf{M}/A)$ so that $f(a_j) = a$ and $f(b_j) = b$. Then $J = \{f(a_k) | k \in I\}$ is indiscernible over A and thus all the elements in J have the same strong type over A (exercise). So $stp(f(a_i)/A) = stp(f(a_j)/A) = stp(a/A)$. Since $f(a_i) \downarrow_A b$, by Exercise 4.11 (i), $t(f(a_i), A \cup b) = t(a, A \cup b)$, i.e. $b \not \downarrow_A f(a_i)$. Since $f(b_i) \downarrow_A a$, this contradicts the choice of I. \Box

As a corollary this implies that if $a \cup b \downarrow_A B$, then $a \downarrow_A B$. At least with this, the hint for Exercise 4.11 (vi) works.

p.16+3: ... $t(b_i, \mathcal{B} \cup a_i)$ forks over \mathcal{B} iff...

p.16-7: ... $a_i \downarrow_A \cup_{j < i} a_j$,...

p.21+18: ... $(p, A) \in F_{\lambda}$ iff $(f(p), f[A]) \in F_{\lambda}$.

p.26+6: ...If $\xi^{<\kappa(T)} > \xi$, then...

p.26+12: ... A is the set of those $a_{\eta'}$ such that $\eta' \in \xi^{\leq \kappa}$ and $\eta \upharpoonright \alpha$ is not...

p.27-13: ... Exercise 4.11 (v).

p.28+10: ...and A be (F_{λ}^{a}, μ) -saturated...

p.28-11: ... x = a and $\lambda \ge \kappa_r(T)$ or x = s and $\lambda > |T| \dots$

p.29+4: ... x = a and $\lambda \ge \kappa_r(T)$ or x = s and $\lambda > |T| \dots$

p.29-13: from \mathcal{A} , such that (e) below holds.

p.30-15: ...set $I = \{a_i \cup A_i | i < \omega\}$

p.31+18: ...and $a \downarrow_{\mathcal{C}} \mathcal{B}$. So...

Remark: Theorem 12.1 and its proof are correct also without the changes below.

p.32+5: $(2^{|T|})^+$. Then...

p.32+7: ...even $\kappa = cf(\kappa) > (2^{|T|})^+$

p.32+12: Let $\lambda = (2^{|T|})^+$. We...

Missing definitions:

 $\lambda(T)$ is the least cardinal λ such that T is λ -stable. $\kappa_r(T)$ is the least regular cardinal $\geq \kappa(T)$.