LIST OF mathematical CORRECTIONS

p.3-10: such that $f_{\eta \upharpoonright(i+1)}\left(a_{i}\right)=f_{\eta \upharpoonright i}\left(b_{i}\right)\left(\right.$ or $\left.f_{\eta \upharpoonright(i+1)}\left(b_{i}\right)=f_{\eta \upharpoonright i}\left(a_{i}\right)\right)$ and...
p. $4+2$: ...and $\neg \phi(x, b) \in p$.
p. $4+5: \cup_{j<i}\left(c_{j} \cup d_{j}\right)$. Since...
p.14-3: The hint for Exercise 4.11 (vi) seems to be insufficient: First proof Theorem 5.5 e.g. as follows:

Suppose not. Then choose $a_{i}, b_{i}, i<\xi=\left((|A|+2)^{|T|}\right)^{+}$so that $t\left(a_{i} \cup b_{i}, A\right)=$ $t(a \cup b, A), b_{i} \downarrow_{A} \bigcup_{j<i}\left(a_{j} \cup b_{j}\right)$ and $a_{i} \downarrow_{A} b_{i} \cup \bigcup_{j<i}\left(a_{j} \cup b_{j}\right)$. Then by (Exercise 2.3 (iii), Lemma 2.4 and) Theorem 3.3, there is $I \subseteq \xi$ of power ξ such that $\left\{a_{i} \cup b_{i} \mid i \in\right.$ $I\}$ is indiscernible over A. Choose $j<i$ from I and $f \in \operatorname{Aut}(\mathbf{M} / A)$ so that $f\left(a_{j}\right)=a$ and $f\left(b_{j}\right)=b$. Then $J=\left\{f\left(a_{k}\right) \mid k \in I\right\}$ is indiscernible over A and thus all the elements in J have the same strong type over A (exercise). So $\operatorname{stp}\left(f\left(a_{i}\right) / A\right)=\operatorname{stp}\left(f\left(a_{j}\right) / A\right)=\operatorname{stp}(a / A)$. Since $f\left(a_{i}\right) \downarrow_{A} b$, by Exercise 4.11 (i), $t\left(f\left(a_{i}\right), A \cup b\right)=t(a, A \cup b)$, i.e. $b \quad \swarrow_{A} f\left(a_{i}\right)$. Since $f\left(b_{i}\right) \downarrow_{A} a$, this contradicts the choice of I. ם
As a corollary this implies that if $a \cup b \downarrow_{A} B$, then $a \downarrow_{A} B$. At least with this, the hint for Exercise 4.11 (vi) works.
p.16+3: ...t $\left(b_{i}, \mathcal{B} \cup a_{j}\right)$ forks over \mathcal{B} iff...
p.16-7: $\ldots a_{i} \downarrow_{A} \cup_{j<i} a_{j}, \ldots$
p.21+18: $\ldots(p, A) \in F_{\lambda}$ iff $(f(p), f[A]) \in F_{\lambda}$.
p.26+6: ...If $\xi^{<\kappa(T)}>\xi$, then...
p.26+12: ... A is the set of those $a_{\eta^{\prime}}$ such that $\eta^{\prime} \in \xi^{\leq \kappa}$ and $\eta \upharpoonright \alpha$ is not...
p.27-13: ...Exercise 4.11 (v).
p.28+10: ...and A be $\left(F_{\lambda}^{a}, \mu\right)$-saturated...
p.28-11: $\ldots x=a$ and $\lambda \geq \kappa_{r}(T)$ or $x=s$ and $\lambda>|T| \ldots$
p.29+4: $\ldots x=a$ and $\lambda \geq \kappa_{r}(T)$ or $x=s$ and $\lambda>|T| \ldots$
p.29-13: from \mathcal{A}, such that (e) below holds.
p.30-15: ...set $I=\left\{a_{i} \cup A_{i} \mid i<\omega\right\}$
p.31+18: ...and $a \downarrow_{\mathcal{C}} \mathcal{B}$. So...

Remark: Theorem 12.1 and its proof are correct also without the changes below.
p. 32+5: $\left(2^{|T|}\right)^{+}$. Then...
p. $32+7$: ...even $\kappa=c f(\kappa)>\left(2^{|T|}\right)^{+}$
p. $32+12$: Let $\lambda=\left(2^{|T|}\right)^{+}$. We...

Missing definitions:
$\lambda(T)$ is the least cardinal λ such that T is λ-stable.
$\kappa_{r}(T)$ is the least regular cardinal $\geq \kappa(T)$.

