Introduction to Fourier Analysis Home assignment 9

1. Let

$$
u(\varphi)=\int_{-1}^{1} \varphi(x, x) \mathrm{d} x, \quad \varphi \in \mathscr{S}\left(\mathbb{R}^{2}\right)
$$

Show that $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$ and compute its first order derivatives. What is $\left(\partial_{1}+\partial_{2}\right) u$?

Solution. The inequality

$$
|u(\varphi)| \leqslant \int_{-1}^{1}|\varphi(x, x)| \mathrm{d} x \leqslant 2\|\varphi\|_{\mathscr{L}^{\infty}\left(\mathbb{R}^{2}\right)}
$$

which holds for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{2}\right)$, shows that $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{2}\right)$. The first order derivatives of u are of course given by the formula

$$
\partial_{i} u(\varphi)=-u\left(\partial_{i} \varphi\right)=-\int_{-1}^{1} \partial_{i} \varphi(x, x) \mathrm{d} x
$$

which holds for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{2}\right)$ and for each $i \in\{1,2\}$.
Finally, by the chain rule, we have for each $\varphi \in \mathscr{S}\left(\mathbb{R}^{2}\right)$ that

$$
\begin{aligned}
&\left(\partial_{1}+\partial_{2}\right) u(\varphi)=-\int_{-1}^{1}\left(\partial_{1} \varphi(x, x)+\partial_{2} \varphi(x, x)\right) \mathrm{d} x \\
&=-\int_{-1}^{1} \frac{\mathrm{~d}}{\mathrm{~d} x} \varphi(x, x) \mathrm{d} x=\varphi(-1,-1)-\varphi(1,1) .
\end{aligned}
$$

That is, we have

$$
\left(\partial_{1}+\partial_{2}\right) u=\delta_{\langle-1,-1\rangle}-\delta_{\langle 1,1\rangle} .
$$

2. Prove that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^{2}}=\frac{\pi^{2}}{\sin ^{2} \pi a},
$$

when a is real and not equal to an integer.
Solution. Let f be the function given by the formula

$$
f(x)= \begin{cases}1-|x| & \text { if }|x| \leqslant 1, \text { and } \\ 0, & \text { when }|x|>1,\end{cases}
$$

for all $x \in \mathbb{R}_{+}$. The Fourier transform of f was calculated in the exercise 5 of the seventh problem set. In the same way, it is not difficult to see that with the conventions used in the book of Stein and Shakarchi, we have

$$
\widehat{f}(\xi)=\int_{-\infty}^{\infty} f(x) e^{-2 \pi i x \xi} \mathrm{~d} x=\left(\frac{\sin \pi \xi}{\pi \xi}\right)^{2}
$$

for nonzero real numbers ξ. Since f is even, we have $\widehat{\widehat{f}}=f$. Applying the Poisson summation formula to the function \widehat{f} results in

$$
\sum_{n=-\infty}^{\infty} \frac{\sin ^{2} \pi a}{\pi^{2}(n+a)^{2}}=\sum_{n=-\infty}^{\infty} \widehat{f}(n+a)=\sum_{n=-\infty}^{\infty} f(n) e^{2 \pi i n a}=f(1)=1
$$

thereby recovering the required identity.
3. This exercise collects the basic properties of the gamma function.
a) The gamma function $\Gamma(s)$ is defined by

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1} \mathrm{~d} x, \quad s>0
$$

Prove that this is well defined, i.e. that the integral exists as an improper integral.
b) Prove that $\Gamma(s+1)=s \Gamma(s), s>0$. Conclude that for every positive integer n we have $\Gamma(n+1)=n$!.
c) Show that

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2} .
$$

Solution. a) Clearly the integrand is a continuous function. In the neighbourhood of zero, the integrability is easily seen because the exponential factor is bounded and the x^{s-1}-factor is integrable. For large x the integrability is even more obvious. The integrand is positive and continuous, so the integral exists as a simple Lebesgue integral instead of a mere improper integral.
b) The dominated convergence theorem allows us to employ an integration by parts to get

$$
\begin{array}{r}
\Gamma(s+1)=\int_{0}^{\infty} e^{-x} x^{s} \mathrm{~d} x=\lim _{T \longrightarrow \infty} \int_{T^{-1}}^{T} e^{-x} x^{s} \mathrm{~d} x \\
\left.=\lim _{T \longrightarrow \infty}\left(-e^{-x} x^{s}\right]_{T^{-1}}^{x=T}+s \int_{T^{-1}}^{T} e^{-x} x^{s-1} \mathrm{~d} x\right)=s \int_{0}^{\infty} e^{-x} x^{s-1} \mathrm{~d} x=s \Gamma(s)
\end{array}
$$

for all $s \in \mathbb{R}_{+}$.
The claimed formula $\Gamma(n+1)=n$! is seen to hold for all nonnegative integers n by induction once it is observed that
$\left.\Gamma(1)=\int_{0}^{\infty} e^{-x} \mathrm{~d} x=\lim _{T \longrightarrow \infty}\left(-e^{-x}\right)\right]_{T^{-1}}^{x=T}=\lim _{T \longrightarrow \infty}\left(e^{-T^{-1}}-e^{-T}\right)=e^{-0}=1=0!$.
c) A simple change of variables gives

$$
\Gamma\left(\frac{1}{2}\right)=\int_{0}^{\infty} \frac{e^{-x} \mathrm{~d} x}{\sqrt{x}}=\int_{0}^{\infty} \frac{e^{-y^{2}} \cdot 2 y \mathrm{~d} y}{y}=2 \int_{0}^{\infty} e^{-y^{2}} \mathrm{~d} y=2 \cdot \frac{\sqrt{\pi}}{2}=\sqrt{\pi}
$$

and by part b), we have

$$
\Gamma\left(\frac{3}{2}\right)=\frac{1}{2} \Gamma\left(\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2}
$$

4. Define the zeta function by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \quad s>1
$$

Prove that

$$
\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s)=\frac{1}{2} \int_{0}^{\infty} t^{\frac{s}{2}-1}(\vartheta(t)-1) \mathrm{d} t
$$

where the theta function is defined by

$$
\vartheta(s)=\sum_{n=-\infty}^{\infty} e^{-\pi n^{2} s}
$$

Solution.

$$
\begin{aligned}
& \frac{1}{2} \int_{0}^{\infty} t^{\frac{s}{2}-1}(\vartheta(t)-1) \mathrm{d} t=\int_{0}^{\infty} t^{\frac{s}{2}-1} \sum_{n=1}^{\infty} e^{-\pi n^{2} t} \mathrm{~d} t=\sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-\pi n^{2} t} t^{\frac{s}{2}-1} \mathrm{~d} t \\
= & \sum_{n=1}^{\infty} \int_{0}^{\infty} e^{-u}\left(\frac{u}{\pi n^{2}}\right)^{\frac{s}{2}-1} \frac{\mathrm{~d} u}{\pi n^{2}}=\sum_{n=1}^{\infty} \pi^{-\frac{s}{2}} n^{-s} \int_{0}^{\infty} e^{-u} u^{\frac{s}{2}-1} \mathrm{~d} u=\pi^{-\frac{s}{2}} \Gamma\left(\frac{s}{2}\right) \zeta(s) .
\end{aligned}
$$

5. Let's return to the X-ray transform. For each $\langle t, \vartheta\rangle \in \mathbb{R} \times[-\pi, \pi]$ let $L_{t, \vartheta}$ be the line in the $\langle x, y\rangle$-plane defined by

$$
x \cos \vartheta+y \sin \vartheta=t
$$

Define the X-ray transform for $f \in \mathscr{S}\left(\mathbb{R}^{2}\right)$ by

$$
(X f)(t, \vartheta)=\int_{L_{t, \vartheta}} f=\int_{-\infty}^{\infty} f(t \cos \vartheta+u \sin \vartheta ; t \sin \vartheta-u \cos \vartheta) \mathrm{d} u .
$$

Compute $X g$, when

$$
g(x, y)=e^{-\pi\left(x^{2}+y^{2}\right)}
$$

Solution. The computation reduces to Gaussian integrals. For any $t \in \mathbb{R}$ and any $\vartheta \in[-\pi, \pi]$.

$$
\begin{aligned}
&(X g)(t, \vartheta)= \int_{-\infty}^{\infty} g(t \cos \vartheta+u \sin \vartheta ; t \sin \vartheta-u \cos \vartheta) \mathrm{d} u \\
&= \int_{-\infty}^{\infty} \exp \left(-\pi(t \cos \vartheta+u \sin \vartheta)^{2}-\pi(t \sin \vartheta-u \cos \vartheta)^{2}\right) \mathrm{d} u \\
&= \int_{-\infty}^{\infty} \exp \left(-\pi t^{2} \cos ^{2} \vartheta-\pi u^{2} \sin ^{2} \vartheta-2 \pi t u \cos \vartheta \sin \vartheta\right. \\
&\left.\quad-\pi t^{2} \sin ^{2} \vartheta-\pi u^{2} \cos ^{2} \vartheta+2 \pi t u \sin \vartheta \cos \vartheta\right) \mathrm{d} u \\
&= \int_{-\infty}^{\infty} \exp \left(-\pi t^{2}-\pi u^{2}\right) \mathrm{d} u=e^{-\pi t^{2}} \int_{-\infty}^{\infty} e^{-\pi u^{2}} \mathrm{~d} u=e^{-\pi t^{2}}
\end{aligned}
$$

6. Let again X denote the X-ray transform. Show that $f \in \mathscr{S}\left(\mathbb{R}^{2}\right)$ and $X f \equiv 0$ implies $f \equiv 0$.

Solution. This follows from the important Fourier slice theorem which says that

$$
(\mathscr{F} X f)(t, \vartheta)=\sqrt{2 \pi} \widehat{f}(t \cos \vartheta, t \sin \vartheta)
$$

for all $t \in \mathbb{R}$ and $\vartheta \in[-\pi, \pi]$. Here \mathscr{F} stands for taking the one-dimensional Fourier transform in the first variable. For if $X f \equiv 0$, then $\mathscr{F} X f \equiv 0$, so that $\widehat{f} \equiv 0$, implying that $f \equiv 0$.

The proof of the Fourier slice theorem rests on a simple linear change of integration variables. For all $t \in \mathbb{R}$ and $\vartheta \in[-\pi, \pi]$, we have

$$
\begin{array}{r}
(\mathscr{F} X f)(t, \vartheta)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(v \cos \vartheta+u \sin \vartheta ; v \sin \vartheta-u \cos \vartheta) \mathrm{d} u e^{-i v t} \mathrm{~d} v \\
=\frac{1}{\sqrt{2 \pi}} \iint_{\mathbb{R}^{2}} f(x, y) e^{-i(x \cos \vartheta+y \sin \vartheta) t} \mathrm{~d} x \mathrm{~d} y=\sqrt{2 \pi} \widehat{f}(t \cos \vartheta, t \sin \vartheta) .
\end{array}
$$

