
Introduction to Fourier Analysis
Home assignment 9

1. Let

u(ϕ) =

1∫
−1

ϕ(x, x) dx, ϕ ∈ S
Ä
R2
ä
.

Show that u ∈ S ′(R2) and compute its first order derivatives. What is
(∂1 + ∂2)u?

Solution. The inequality

|u(ϕ)| 6
1∫
−1

|ϕ(x, x)| dx 6 2 ‖ϕ‖L∞(R2) ,

which holds for all ϕ ∈ S (R2), shows that u ∈ S ′(R2). The first order
derivatives of u are of course given by the formula

∂iu(ϕ) = −u(∂iϕ) = −
1∫
−1

∂iϕ(x, x) dx,

which holds for all ϕ ∈ S (R2) and for each i ∈
¶
1, 2
©
.

Finally, by the chain rule, we have for each ϕ ∈ S (R2) that

(∂1 + ∂2)u(ϕ) = −
1∫
−1

(∂1ϕ(x, x) + ∂2ϕ(x, x)) dx

= −
1∫
−1

d

dx
ϕ(x, x) dx = ϕ(−1,−1)− ϕ(1, 1) .

That is, we have
(∂1 + ∂2)u = δ〈−1,−1〉 − δ〈1,1〉.

2. Prove that
∞∑

n=−∞

1

(n+ a)2 =
π2

sin2 πa
,

when a is real and not equal to an integer.

Solution. Let f be the function given by the formula

f(x) =

®
1− |x| if |x| 6 1, and
0, when |x| > 1,



for all x ∈ R+. The Fourier transform of f was calculated in the exercise 5 of
the seventh problem set. In the same way, it is not difficult to see that with
the conventions used in the book of Stein and Shakarchi, we have

f̂(ξ) =

∞∫
−∞

f(x) e−2πixξ dx =

Ç
sin πξ

πξ

å2

,

for nonzero real numbers ξ. Since f is even, we have ̂̂f = f . Applying the
Poisson summation formula to the function f̂ results in

∞∑
n=−∞

sin2 πa

π2 (n+ a)2 =
∞∑

n=−∞
f̂(n+ a) =

∞∑
n=−∞

f(n) e2πina = f(1) = 1,

thereby recovering the required identity.

3. This exercise collects the basic properties of the gamma function.
a) The gamma function Γ(s) is defined by

Γ(s) =

∞∫
0

e−xxs−1 dx, s > 0.

Prove that this is well defined, i.e. that the integral exists as an improper
integral.

b) Prove that Γ(s+ 1) = sΓ(s), s > 0. Conclude that for every positive
integer n we have Γ(n+ 1) = n!.

c) Show that

Γ

Ç
1

2

å
=
√
π, Γ

Ç
3

2

å
=

√
π

2
.

Solution. a) Clearly the integrand is a continuous function. In the neigh-
bourhood of zero, the integrability is easily seen because the exponential
factor is bounded and the xs−1-factor is integrable. For large x the integra-
bility is even more obvious. The integrand is positive and continuous, so
the integral exists as a simple Lebesgue integral instead of a mere improper
integral.

b) The dominated convergence theorem allows us to employ an integra-
tion by parts to get

Γ(s+ 1) =

∞∫
0

e−xxs dx = lim
T−→∞

T∫
T−1

e−xxs dx

= lim
T−→∞

Ö
−e−xxs

óx=T
T−1 + s

T∫
T−1

e−xxs−1 dx

è
= s

∞∫
0

e−xxs−1 dx = sΓ(s)



for all s ∈ R+.
The claimed formula Γ(n+ 1) = n! is seen to hold for all nonnegative

integers n by induction once it is observed that

Γ(1) =

∞∫
0

e−x dx = lim
T−→∞

Ä
−e−x

äóx=T
T−1 = lim

T−→∞

(
e−T

−1 − e−T
)

= e−0 = 1 = 0!.

c) A simple change of variables gives

Γ

Ç
1

2

å
=

∞∫
0

e−x dx√
x

=

∞∫
0

e−y
2 · 2ydy

y
= 2

∞∫
0

e−y
2

dy = 2 ·
√
π

2
=
√
π,

and by part b), we have

Γ

Ç
3

2

å
=

1

2
Γ

Ç
1

2

å
=

√
π

2
.

4. Define the zeta function by

ζ(s) =
∞∑
n=1

1

ns
, s > 1.

Prove that

π−
s
2 Γ
Ås

2

ã
ζ(s) =

1

2

∞∫
0

t
s
2
−1
(
ϑ(t)− 1

)
dt,

where the theta function is defined by

ϑ(s) =
∞∑

n=−∞
e−πn

2s.

Solution.

1

2

∞∫
0

t
s
2
−1
(
ϑ(t)− 1

)
dt =

∞∫
0

t
s
2
−1

∞∑
n=1

e−πn
2t dt =

∞∑
n=1

∞∫
0

e−πn
2tt

s
2
−1 dt

=
∞∑
n=1

∞∫
0

e−u
Å u

πn2

ãs
2
−1 du

πn2
=
∞∑
n=1

π−
s
2n−s

∞∫
0

e−uu
s
2
−1 du = π−

s
2 Γ
Ås

2

ã
ζ(s) .

5. Let’s return to the X-ray transform. For each 〈t, ϑ〉 ∈ R× [−π, π] let Lt,ϑ
be the line in the 〈x, y〉-plane defined by

x cosϑ+ y sinϑ = t.



Define the X-ray transform for f ∈ S (R2) byÄ
Xf
ä
(t, ϑ) =

∫
Lt,ϑ

f =

∞∫
−∞

f
(
t cosϑ+ u sinϑ ; t sinϑ− u cosϑ

)
du.

Compute Xg, when
g(x, y) = e−π(x2+y2).

Solution. The computation reduces to Gaussian integrals. For any t ∈ R
and any ϑ ∈ [−π, π].Ä
Xg
ä

(t, ϑ) =

∞∫
−∞

g
(
t cosϑ+ u sinϑ ; t sinϑ− u cosϑ

)
du

=

∞∫
−∞

exp
(
− π (t cosϑ+ u sinϑ)2 − π (t sinϑ− u cosϑ)2

)
du

=

∞∫
−∞

exp
Ä
− πt2 cos2 ϑ− πu2 sin2 ϑ− 2πtu cosϑ sinϑ

− πt2 sin2 ϑ− πu2 cos2 ϑ+ 2πtu sinϑ cosϑ
ä

du

=

∞∫
−∞

exp
Ä
−πt2 − πu2

ä
du = e−πt

2

∞∫
−∞

e−πu
2

du = e−πt
2

.

6. Let again X denote the X-ray transform. Show that f ∈ S (R2) and
Xf ≡ 0 implies f ≡ 0.

Solution. This follows from the important Fourier slice theorem which says
that Ä

FXf
ä

(t, ϑ) =
√

2πf̂(t cosϑ, t sinϑ)

for all t ∈ R and ϑ ∈ [−π, π]. Here F stands for taking the one-dimensional
Fourier transform in the first variable. For if Xf ≡ 0, then FXf ≡ 0, so
that f̂ ≡ 0, implying that f ≡ 0.

The proof of the Fourier slice theorem rests on a simple linear change of
integration variables. For all t ∈ R and ϑ ∈ [−π, π], we haveÄ
FXf

ä
(t, ϑ) =

1√
2π

∞∫
−∞

∞∫
−∞

f
(
v cosϑ+ u sinϑ ; v sinϑ− u cosϑ

)
du e−ivt dv

=
1√
2π

∫∫
R2

f(x, y) e−i(x cosϑ+y sinϑ)t dx dy =
√

2πf̂(t cosϑ, t sinϑ) .


