INTRODUCTION TO FOURIER ANALYSIS
HOME ASSIGNMENT 9

1. Let
u(p) = /(p(x,x) dzx, Y E Y(R2) .

Show that v € %'(R?) and compute its first order derivatives. What is
(81 + 82) u?

Solution. The inequality
1
(@) < [ o, )] dz <2 g qus)
-1

which holds for all ¢ € . (R?), shows that u € .%'(R?). The first order

derivatives of u are of course given by the formula

duu(p) = —uldg) = — [ Dip(w, v) dr,

which holds for all ¢ € .(R?) and for cach i € {1, 2}.
Finally, by the chain rule, we have for each ¢ € .%(R?) that

(01 + July) = — [ (Oro(w, ) + Dapl, ) d
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That is, we have
(01 + O2) u = d(—1,-1) — d1,1)-
2. Prove that
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when a is real and not equal to an integer.
Solution. Let f be the function given by the formula

_ [1—|z| if|z| <1, and
fle) = {0, when |z| > 1,



for all x € R,. The Fourier transform of f was calculated in the exercise 5 of
the seventh problem set. In the same way, it is not difficult to see that with
the conventions used in the book of Stein and Shakarchi, we have

[ . 2
= [y an - (7).

for nonzero real numbers £. Since f is even, we have }\: f- Applying the
Poisson summation formula to the function f results in
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thereby recovering the required identity:.

3. This exercise collects the basic properties of the gamma function.
a) The gamma function I'(s) is defined by

[(s) = /e’x:c‘(”’1 dz, s > 0.
0

Prove that this is well defined, i.e. that the integral exists as an improper
integral.

b) Prove that I'(s + 1) = sI'(s), s > 0. Conclude that for every positive
integer n we have I'(n + 1) = nl.

c) Show that
Q- 10)-F

Solution. a) Clearly the integrand is a continuous function. In the neigh-
bourhood of zero, the integrability is easily seen because the exponential
factor is bounded and the z*~!-factor is integrable. For large = the integra-
bility is even more obvious. The integrand is positive and continuous, so
the integral exists as a simple Lebesgue integral instead of a mere improper
integral.

b) The dominated convergence theorem allows us to employ an integra-
tion by parts to get
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= lim —e’x:cs] s / e lde | =5 / e "2* tdr = sI'(s)
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for all s € R,.
The claimed formula I'(n + 1) = n! is seen to hold for all nonnegative
integers n by induction once it is observed that

(1) = /e_”” dr = lim (—e_x)]xiT = lim (e‘Tﬁl — e_T) —e0=1=0
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c) A simple change of variables gives
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and by part b), we have

Prove that

where the theta function is defined by

o)

I(s)= Y e
Solution.
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5. Let’s return to the X-ray transform. For each (t,9) € R x [—m, 7] let Ly
be the line in the (x,y)-plane defined by

xcos 4+ ysiny = t.



Define the X-ray transform for f € .7 (R?) b

Xf t19 /f / tcost + usind; tsinﬁ—ucosﬁ) du.

Compute X g, when

gla,y) = e @V,

Solution. The computation reduces to Gaussian integrals. For any t € R
and any 9 € [—7, 7.

(Xg) (t,9) = /g(tcos19+usim9; tsinﬂ—ucosﬁ) du

—00
[e.o]

= /exp(— 7 (tcost + usin®)® — 7 (tsind — ucosq?)z) du

—00
oo

= / exp( — wt? cos® ¥ — mu? sin® ¥ — 2mtu cos U sin ¥

—00

w2 sin? 9 — wu? cos® ¥ + 2rtu sin ¥ cos 19) du

= /exp(—mf2 — 7ru2) du = e_”tg/ e dy = e ™.
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6. Let again X denote the X-ray transform. Show that f € %(R?) and
X f =0 implies f = 0.

Solution. This follows from the important Fourier slice theorem which says
that
(ﬁXf) (t,0) =V 27rf(t cos ¥, t sin )

for all £ € R and ¢ € [—m, 7]. Here .% stands for taking the one-dimensional
Fourier transform in the first variable. For if X f = 0, then . # X f = 0, so
that fz 0, implying that f = 0.

The proof of the Fourier slice theorem rests on a simple linear change of
integration variables. For all ¢ € R and ¢ € [—m, 7], we have
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or ZO [Of vecosY + usind; vsinﬁ—ucosﬁ)du6—zvtdv
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\/2_ /f z,y) e weostrysindt 4o 4y — /27 f(t cos ¥, tsin 1) .
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