Introduction to Fourier Analysis Home assignment 8

1. Let $A: \mathbb{R}^{n} \longrightarrow \mathbb{R}^{n}$ be a linear transformation, and $f \in \mathscr{L}^{1}\left(\mathbb{R}^{n}\right)$. Define $g(x)=f(A x), x \in \mathbb{R}^{n}$. Prove that if A is invertible, then $g \in \mathscr{L}^{1}\left(\mathbb{R}^{n}\right)$. Also, compute \widehat{g}.

Solution. The first claim is rather obvious, for

$$
\|g\|_{\mathscr{L}^{1}}=\int_{\mathbb{R}^{n}}|f(A x)| \mathrm{d} x=\frac{1}{|\operatorname{det} A|} \int_{\mathbb{R}^{n}}|f(y)| \mathrm{d} y<\infty .
$$

If the matrix A was not invertible, the image of the corresponding linear operator would be a set of measure zero in \mathbb{R}^{n}, and thus g could not be well-defined.

The computation of \widehat{g} is straightforward: for almost all $\xi \in \mathbb{R}^{n}$,

$$
\begin{aligned}
\widehat{g}(\xi)= & \frac{1}{(\sqrt{2 \pi})^{n}} \int_{\mathbb{R}^{n}} f(A x) e^{-i x \cdot \xi} \mathrm{~d} x=\frac{1}{(\sqrt{2 \pi})^{n}|\operatorname{det} A|_{\mathbb{R}^{n}}} \int f(y) e^{-i A^{-1} y \cdot \xi} \mathrm{~d} y \\
& =\frac{1}{(\sqrt{2 \pi})^{n}|\operatorname{det} A|} \int_{\mathbb{R}^{n}} f(y) e^{-i y \cdot\left(A^{-1}\right)^{T} \xi} \mathrm{~d} y=\frac{1}{|\operatorname{det} A|} \widehat{f}\left(\left(A^{-1}\right)^{T} \xi\right) .
\end{aligned}
$$

2. Give an example of a function $f \in \mathscr{L}^{2}$ such that $f \notin \mathscr{L}^{1}$ but $\hat{f} \in \mathscr{L}^{1}$.

Solution. Let $f: \mathbb{R} \longrightarrow \mathbb{C}$ be the function for which for each $x \in \mathbb{R}$

$$
f(x)= \begin{cases}\sqrt{\frac{2}{\pi}} \cdot \frac{\sin x}{x}, & \text { when } x \neq 0, \text { and } \\ \sqrt{\frac{2}{\pi}}, & \text { when } x=0\end{cases}
$$

Furthermore, let $g=\chi_{[-1,1]}: \mathbb{R} \longrightarrow \mathbb{C}$.
We have $f \in \mathscr{L}^{2}(\mathbb{R})$ since

$$
\int_{-\infty}^{\infty}\left|\frac{\sin x}{x}\right|^{2} \mathrm{~d} x \ll 1+\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{2}}<\infty .
$$

On the other hand, in the exercise 6 of the second exercise set we proved that for any $N \in \mathbb{Z}_{+}$, we have

$$
\int_{0}^{N \pi} \frac{|\sin y| \mathrm{d} y}{y} \gg \log N
$$

Thus, $f \notin \mathscr{L}^{1}(\mathbb{R})$. For the function g, it is obvious that it belongs to both $\mathscr{L}^{1}(\mathbb{R})$ and $\mathscr{L}^{2}(\mathbb{R})$.

In the previous exercise set, in exercise 4 , it was proved that $\widehat{g}=f$. Since g is an even function, we have $\widehat{f}=g$, and therefore conclude that f is an example of the required kind.
3. Let for $0<r<\infty$,

$$
g_{r}(x)=e^{-r|x|^{2}}, \quad x \in \mathbb{R}^{n}
$$

Compute the convolution $g_{r_{1}} * g_{r_{2}}$.
Solution. Since $\widehat{g_{\frac{1}{2}}}=g_{\frac{1}{2}}$, we have

$$
\widehat{g_{r}}(\xi)=\widehat{g_{\frac{1}{2}}(\sqrt{2 r} \cdot)}(\xi)=\frac{1}{(\sqrt{2 r})^{n}} \widehat{g_{\frac{1}{2}}}\left(\frac{\xi}{\sqrt{2 r}}\right)=\frac{e^{-\frac{1}{4 r}|\xi|^{2}}}{(\sqrt{2 r})^{n}},
$$

for all $r \in \mathbb{R}_{+}$and $\xi \in \mathbb{R}^{n}$. Now we can easily compute the Fourier transform of the convolution $g_{r_{1}} * g_{r_{2}}$ since

$$
\begin{aligned}
& \widehat{g_{r_{1}} * g_{r_{2}}}(\xi)=(\sqrt{2 \pi})^{n} \widehat{g_{r_{1}}}(\xi) \widehat{g_{r_{2}}}(\xi)=\frac{(\sqrt{2 \pi})^{n}}{2^{n}\left(\sqrt{r_{1} r_{2}}\right)^{n}} e^{-\left(\frac{1}{4 r_{1}}+\frac{1}{4 r_{2}}\right)|\xi|^{2}} \\
& =\left(\sqrt{\frac{\pi}{2 r_{1} r_{2}}}\right)^{n} g_{\frac{1}{4 r_{1}}+\frac{1}{4 r_{2}}}(\xi),
\end{aligned}
$$

for all $\xi \in \mathbb{R}^{n}$. Hence

$$
\begin{aligned}
\left(g_{r_{1}} * g_{r_{2}}\right)(x) & \left.=\left(\sqrt{\frac{\pi}{2 r_{1} r_{2}}}\right)^{n} \frac{g_{\frac{1}{4 r_{1}}+\frac{1}{4 r_{2}}}^{4, x}}{4}-x\right) \\
& =\left(\sqrt{\frac{\pi}{2 r_{1} r_{2}}}\right)^{n} \frac{\left.g_{\frac{r_{1} r_{2}}{r_{1}}\left(-r_{2}\right.}^{4 \sqrt{2 r_{1}}+\frac{1}{2 r_{2}}}\right)^{n}}{\left(\sqrt{\frac{\pi}{r_{1}+r_{2}}}\right)^{n} e^{-\frac{r_{1} r_{2}}{r_{1}+r_{2}}|x|^{2}} .} .
\end{aligned}
$$

4. Let A be a positive definite symmetric $n \times n$ matrix with real coefficients. Compute the Fourier transform of $f(x)=e^{-A x \cdot x}, x \in \mathbb{R}^{n}$.

Solution. Let B be a positive definite symmetric $n \times n$ matrix with real coefficients which is a square root of A in the sense that $B^{2}=A$. One way to see that such a matrix exists is to use the fact that the matrix A is orthogonally diagonalizable, that is, $A=O^{T} \Lambda O$ for some real orthogonal $n \times n$ matrix O and some real diagonal matrix Λ. Since A is positive definite, the diagonal elements of Λ are positive real numbers and there clearly exists another diagonal matrix Ξ with positive real elements such that $\Xi^{2}=\Lambda$. Now we can simply set $B=O^{T} \Xi O$.

Using the notation introduced in the previous exercise, we have

$$
\widehat{g_{1}}=\left(\frac{1}{\sqrt{2}}\right)^{n} g_{\frac{1}{4}} .
$$

The idea of introducing the matrix B is that now

$$
f(x)=e^{-A x \cdot x}=e^{-B x \cdot B x}=g_{1}(B x)
$$

for all $x \in \mathbb{R}^{n}$. By exercise 1 , the function f is in \mathscr{L}^{1}, and we have for any $\xi \in \mathbb{R}^{n}$ that

$$
\widehat{f}(\xi)=\widehat{g_{1}(B \cdot)}(\xi)=\frac{g_{\frac{1}{4}}\left(B^{-1} \xi\right)}{(\sqrt{2})^{n} \cdot \operatorname{det} B}=\frac{e^{-\frac{1}{4} B^{-1} x \cdot B^{-1} x}}{\sqrt{2^{n}} \cdot \sqrt{\operatorname{det} A}}=\frac{e^{-\frac{1}{4} A^{-1} x \cdot x}}{\sqrt{2^{n} \operatorname{det} A}} .
$$

5. Let $f \in \mathscr{L}^{1}(\mathbb{R})$, and assume that \widehat{f} is continuous and satisfies

$$
\widehat{f}(\xi)=O\left(|\xi|^{-1-\alpha}\right)
$$

as $|\xi| \longrightarrow \infty$ for some $0<\alpha<1$. Prove that f is Hölder continuous of order α, i.e. there exists a constant M such that

$$
|f(x+h)-f(x)| \leqslant M|h|^{\alpha}
$$

for all $x, h \in \mathbb{R}$.
Solution. Clearly $\hat{f} \in \mathscr{L}^{1}$, so that we may take f to be a continuous function and hence the claimed pointwise inequality makes sense. Let $x \in \mathbb{R}$ and $h \in \mathbb{R}_{+}$be arbitrary. The Fourier inversion formula gives the estimate

$$
\begin{aligned}
f(x+h)-f(x) & \ll \int_{-\infty}^{\infty} \widehat{f}(\xi) e^{i(x+h) \xi} \mathrm{d} \xi-\int_{-\infty}^{\infty} \widehat{f}(\xi) e^{i x \xi} \mathrm{~d} \xi \\
& =\int_{-\infty}^{\infty} \widehat{f}(\xi) e^{i x \xi}\left(e^{i h \xi}-1\right) \mathrm{d} \xi \\
& \ll \int_{-h^{-1}}^{h^{-1}}|\widehat{f}(\xi)| \cdot\left|e^{i h \xi}-1\right| \mathrm{d} \xi+\left(\int_{-\infty}^{-h^{-1}}+\int_{h^{-1}}^{\infty}\right)|\widehat{f}(\xi)| \cdot\left|e^{i h \xi}-1\right| \mathrm{d} \xi \\
< & \|\widehat{f}\|_{\mathscr{L}^{\infty}} \int_{-h^{-1}}^{h^{-1}}\left|e^{i h \xi}-1\right| \mathrm{d} \xi+4 \int_{h^{-1}}^{\infty} \frac{\mathrm{d} \xi}{\xi^{1+\alpha}} \\
< & \int_{-h^{-1}}^{h^{-1}}\left|e^{i h \xi}-1\right| \mathrm{d} \xi+h^{\alpha} .
\end{aligned}
$$

It suffices to prove that the remaining integral is $O\left(h^{\alpha}\right)$.
If $h \geqslant 1$, then

$$
\int_{-h^{-1}}^{h^{-1}}\left|e^{i h \xi}-1\right| \mathrm{d} \xi \leqslant 2 h^{-1} \cdot 2 \leqslant 4 \leqslant 4 h^{\alpha} .
$$

On the other hand, if $0<h<1$, then

$$
\int_{-h^{-1}}^{h^{-1}}\left|e^{i h \xi}-1\right| \mathrm{d} \xi \leqslant \int_{-1}^{1}|h \xi| \mathrm{d} \xi \ll h \leqslant h^{\alpha},
$$

and we are done.
6. Consider the linear partial differential operator $P(x, \partial)$ given by

$$
P(x, \partial) u(x)=\sum_{|\alpha| \leqslant m} a_{\alpha}(x) \partial^{\alpha} u(x),
$$

where the C^{∞}-coefficients a_{α} and all their derivatives are bounded on \mathbb{R}^{n}. Prove that $P(x, \partial)$ maps the Schwartz space $\mathscr{S}\left(\mathbb{R}^{n}\right)$ to itself continuously.

Solution. The claim follows from the observation that for any $u \in \mathscr{S}$ and for all multi-indices α and β we have

$$
\begin{aligned}
& \left\|x^{\alpha} \partial^{\beta} P(x, \partial) u\right\|_{\infty}=\left\|\sum_{|\gamma| \leqslant m} x^{\alpha} \partial^{\beta}\left(a_{\gamma} \partial^{\gamma} u\right)\right\|_{\infty} \\
& =\left\|\sum_{|\gamma| \leqslant m} x^{\alpha} \sum_{\delta \leqslant \beta}\binom{\beta}{\delta} \partial^{\beta-\delta} a_{\gamma} \cdot \partial^{\gamma+\delta} u\right\|_{\infty} \\
& \\
& \leqslant \sum_{|\gamma| \leqslant m} \sum_{\delta \leqslant \beta}\binom{\beta}{\delta}\left\|\partial^{\beta-\delta} a_{\gamma}\right\|_{\infty} \cdot\left\|x^{\alpha} \partial^{\gamma+\delta} u\right\|_{\infty}
\end{aligned}
$$

