
Introduction to Fourier Analysis
Home assignment 8

1. Let A : Rn −→ Rn be a linear transformation, and f ∈ L 1(Rn). Define
g(x) = f(Ax), x ∈ Rn. Prove that if A is invertible, then g ∈ L 1(Rn). Also,
compute ĝ.

Solution. The first claim is rather obvious, for

∥∥∥g∥∥∥
L 1

=
∫

Rn

∣∣∣f(Ax)
∣∣∣ dx =

1

|detA|

∫
Rn

∣∣∣f(y)
∣∣∣ dy <∞.

If the matrix A was not invertible, the image of the corresponding linear
operator would be a set of measure zero in Rn, and thus g could not be
well-defined.

The computation of ĝ is straightforward: for almost all ξ ∈ Rn,

ĝ(ξ) =
1Ä√
2π
än ∫

Rn

f(Ax) e−ix·ξdx =
1Ä√

2π
än |detA|

∫
Rn

f(y) e−iA
−1y·ξdy

=
1Ä√

2π
än |detA|

∫
Rn

f(y) e−iy·(A
−1)

T
ξdy =

1

|detA|
f̂
Ä
(A−1)T ξ

ä
.

2. Give an example of a function f ∈ L 2 such that f 6∈ L 1 but f̂ ∈ L 1.

Solution. Let f : R −→ C be the function for which for each x ∈ R

f(x) =


»

2
π
· sinx

x
, when x 6= 0, and»

2
π
, when x = 0.

Furthermore, let g = χ[−1,1] : R −→ C.
We have f ∈ L 2(R) since

∞∫
−∞

∣∣∣∣∣sinxx
∣∣∣∣∣
2

dx� 1 +

∞∫
1

dx

x2
<∞.

On the other hand, in the exercise 6 of the second exercise set we proved that
for any N ∈ Z+, we have

Nπ∫
0

|sin y| dy
y

� logN.



Thus, f 6∈ L 1(R). For the function g, it is obvious that it belongs to both
L 1(R) and L 2(R).

In the previous exercise set, in exercise 4, it was proved that ĝ = f . Since
g is an even function, we have f̂ = g, and therefore conclude that f is an
example of the required kind.

3. Let for 0 < r <∞,

gr(x) = e−r|x|
2

, x ∈ Rn.

Compute the convolution gr1 ∗ gr2 .

Solution. Since ĝ 1
2

= g 1
2
, we have

ĝr(ξ) =
⁄�
g 1

2

Ä√
2r·
ä
(ξ) =

1Ä√
2r
än ĝ 1

2

Ç
ξ√
2r

å
=
e−

1
4r
|ξ|2Ä√

2r
än ,

for all r ∈ R+ and ξ ∈ Rn. Now we can easily compute the Fourier transform
of the convolution gr1 ∗ gr2 sinceŸ�gr1 ∗ gr2(ξ) =

Ä√
2π
än”gr1(ξ)”gr2(ξ) =

Ä√
2π
än

2n
Ä√
r1r2

än e−Ä 1
4r1

+ 1
4r2

ä
|ξ|2

=

Ç 
π

2r1r2

ån
g 1

4r1
+ 1

4r2

(ξ) ,

for all ξ ∈ Rn. HenceÄ
gr1 ∗ gr2

ä
(x) =

Ç 
π

2r1r2

ånŸ�g 1
4r1

+ 1
4r2

(−x)

=

Ç 
π

2r1r2

ån g r1r2
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(−x)(√
1

2r1
+ 1

2r2
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Ç 
π
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e
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.

4. Let A be a positive definite symmetric n×n matrix with real coefficients.
Compute the Fourier transform of f(x) = e−Ax·x, x ∈ Rn.

Solution. Let B be a positive definite symmetric n × n matrix with real
coefficients which is a square root of A in the sense that B2 = A. One
way to see that such a matrix exists is to use the fact that the matrix A is
orthogonally diagonalizable, that is, A = OTΛO for some real orthogonal
n×n matrix O and some real diagonal matrix Λ. Since A is positive definite,
the diagonal elements of Λ are positive real numbers and there clearly exists
another diagonal matrix Ξ with positive real elements such that Ξ2 = Λ.
Now we can simply set B = OTΞO.



Using the notation introduced in the previous exercise, we have

ĝ1 =

Ç
1√
2

ån
g 1

4
.

The idea of introducing the matrix B is that now

f(x) = e−Ax·x = e−Bx·Bx = g1(Bx)

for all x ∈ Rn. By exercise 1, the function f is in L 1, and we have for any
ξ ∈ Rn that

f̂(ξ) = ◊�g1(B·)(ξ) =
g 1

4
(B−1ξ)Ä√

2
än · detB

=
e−

1
4
B−1x·B−1x

√
2n ·
√

detA
=

e−
1
4
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√
2n detA

.

5. Let f ∈ L 1(R), and assume that f̂ is continuous and satisfies

f̂(ξ) = O
(
|ξ|−1−α

)
as |ξ| −→ ∞ for some 0 < α < 1. Prove that f is Hölder continuous of order
α, i.e. there exists a constant M such that∣∣∣f(x+ h)− f(x)

∣∣∣ 6 M |h|α

for all x, h ∈ R.

Solution. Clearly f̂ ∈ L 1, so that we may take f to be a continuous function
and hence the claimed pointwise inequality makes sense. Let x ∈ R and
h ∈ R+ be arbitrary. The Fourier inversion formula gives the estimate

f(x+ h)− f(x)�
∞∫
−∞

f̂(ξ) ei(x+h)ξ dξ −
∞∫
−∞

f̂(ξ) eixξ dξ

=

∞∫
−∞

f̂(ξ) eixξ
Ä
eihξ − 1

ä
dξ

�
h−1∫
−h−1
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∣∣∣ · ∣∣∣eihξ − 1
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Ö
−h−1∫
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+
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�
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dξ
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�
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∣∣∣ dξ + hα.



It suffices to prove that the remaining integral is O(hα).
If h > 1, then

h−1∫
−h−1

∣∣∣eihξ − 1
∣∣∣ dξ 6 2h−1 · 2 6 4 6 4hα.

On the other hand, if 0 < h < 1, then

h−1∫
−h−1

∣∣∣eihξ − 1
∣∣∣ dξ 6

1∫
−1

∣∣∣hξ∣∣∣ dξ � h 6 hα,

and we are done.

6. Consider the linear partial differential operator P (x, ∂) given by

P (x, ∂)u(x) =
∑
|α|6m

aα(x) ∂αu(x) ,

where the C∞-coefficients aα and all their derivatives are bounded on Rn.
Prove that P (x, ∂) maps the Schwartz space S (Rn) to itself continuously.

Solution. The claim follows from the observation that for any u ∈ S and
for all multi-indices α and β we have

∥∥∥xα∂βP (x, ∂)u
∥∥∥
∞

=

∥∥∥∥∥ ∑
|γ|6m

xα∂β(aγ∂
γu)

∥∥∥∥∥
∞

=

∥∥∥∥∥ ∑
|γ|6m

xα
∑
δ6β

(
β

δ

)
∂β−δaγ · ∂γ+δu

∥∥∥∥∥
∞

6
∑
|γ|6m

∑
δ6β

(
β

δ

)∥∥∥∂β−δaγ∥∥∥∞ · ∥∥∥xα∂γ+δu∥∥∥∞.


