Introduction to Fourier Analysis Home Assignment 7

1. Let $\varphi(x)=|x|$ for $x \in[0,1]$. Extend φ to \mathbb{R} as a 2-periodic function. Prove that the formula

$$
f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \varphi\left(4^{n} x\right)
$$

defines a continuous function on \mathbb{R}.
Solution. Since $|\varphi(x)| \leqslant 1$ for all $x \in \mathbb{R}$, the series defining f may be compared to the absolutely converging geometric series $\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n}$, thereby establishing that the series defining f converges uniformly.
2. We continue to study properties of φ defined in the first exercise. Fix $x_{0} \in \mathbb{R}$. For every non-negative integer m define a real number δ_{m} by the conditions $\left|\delta_{m}\right|=4^{-m} / 2$ and the sign is fixed by the condition that there are no integers between $4^{m} x_{0}$ and $4^{m}\left(x_{0}+\delta_{m}\right)$. Consider the quotient

$$
\gamma_{n}=\frac{\varphi\left(4^{n}\left(x_{0}+\delta_{m}\right)\right)-\varphi\left(4^{n} x_{0}\right)}{\delta_{m}} .
$$

Prove that
a) If $n>m$ then $\gamma_{n}=0$.
b) If $0 \leqslant n \leqslant m$, then $\left|\gamma_{n}\right| \leqslant 4^{n}$ and $\left|\gamma_{m}\right|=4^{m}$.

Solution. a) This follows from the fact that φ is 2 -periodic and the subsequent observation that when $n>m$, we have

$$
\varphi\left(4^{n}\left(x+\delta_{m}\right)\right)=\varphi\left(4^{n} x \pm 2^{2(n-m)-1}\right)=\varphi\left(4^{n} x\right) .
$$

b) For $0 \leqslant n<m$ the inequalities follow directly from the fact that φ is Lipschitz and in fact

$$
|\varphi(x)-\varphi(y)| \leqslant|x-y|
$$

for all $x, y \in \mathbb{R}$. Finally, the equality $\left|\gamma_{m}\right|=4^{m}$ follows from the observation that since the sign of δ_{m} was chosen in such a way that there are no integers between $4^{m}\left(x_{0}+\delta_{m}\right)$ and $4^{m} x_{0}$, the part of the graph of φ between those values looks like a line segment of slope ± 1, and thus

$$
\left|\gamma_{m}\right|=\left|\frac{\varphi\left(4^{n}\left(x_{0}+\delta_{m}\right)\right)-\varphi\left(4^{n} x_{0}\right)}{\delta_{m}}\right|=\left|\frac{4^{m}\left(x_{0}+\delta_{m}\right)-4^{m} x_{0}}{\delta_{m}}\right|=4^{m} .
$$

3. This continues the study of f and φ defined in the previous exercises. Prove that

$$
\left|\frac{f\left(x_{0}+\delta_{m}\right)-f\left(x_{0}\right)}{\delta_{m}}\right| \geqslant \frac{1}{2}\left(3^{m}+1\right) .
$$

Conclude that f is not differentiable at x_{0}.
Solution. We use the symbols $\gamma_{0}, \gamma_{1}, \ldots$ defined in the previous exercise. Since $\left|\gamma_{0}\right| \leqslant 4^{0}=1$ and $\left|\gamma_{m}\right|=4^{m}$, we have

$$
\left|\left(\frac{3}{4}\right)^{m} \gamma_{m}+\gamma_{0}\right| \geqslant\left|\left(\frac{3}{4}\right)^{m}\right| \gamma_{m}\left|-\left|\gamma_{0}\right|\right| \geqslant 3^{m}-1 .
$$

Similarly, we may estimate

$$
\left|\sum_{n=1}^{m-1}\left(\frac{3}{4}\right)^{n} \gamma_{n}\right| \leqslant \sum_{n=1}^{m-1}\left(\frac{3}{4}\right)^{n}\left|\gamma_{n}\right| \leqslant \sum_{n=1}^{m-1} 3^{n}=3 \cdot \frac{3^{m-1}-1}{3-1}=\frac{3^{m}-3}{2} .
$$

Combining the above estimates with the part a) of the previous exercise gives the inequality

$$
\begin{aligned}
& \left|\frac{f\left(x_{0}+\delta_{m}\right)-f\left(x_{0}\right)}{\delta_{m}}\right|=\left|\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \gamma_{n}\right|=\left|\sum_{n=0}^{m}\left(\frac{3}{4}\right)^{n} \gamma_{n}\right| \\
\geqslant & \left|\left|\left(\frac{3}{4}\right)^{m} \gamma_{m}+\gamma_{0}\right|-\left|\sum_{n=1}^{m-1}\left(\frac{3}{4}\right)^{n} \gamma_{n}\right|\right| \geqslant\left|\left|3^{m}-1\right|-\left|\frac{3^{m}-3}{2}\right|\right|=\frac{3^{m}+1}{2} .
\end{aligned}
$$

Finally, we conclude that the function f can not be differentiable at x_{0} since the difference quotient $\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$ can not tend to a finite limit when h tends to zero.
4. Compute the Fourier transform of the characteristic function of the interval $[-a, a]$, where $a>0$.

Solution. For any $\xi \in \mathbb{R} \backslash\{0\}$, we have

$$
\begin{aligned}
\widehat{\chi_{[-a, a]}}(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \chi_{[-a, a]}(x) e^{-i x \xi} \mathrm{~d} x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-a}^{a} e^{-i x \xi} \mathrm{~d} x=\frac{e^{-i a \xi}-e^{i a \xi}}{-\sqrt{2 \pi} i \xi}=\sqrt{\frac{2}{\pi}} \cdot \frac{\sin a \xi}{\xi}
\end{aligned}
$$

Since $\chi_{[-a, a]} \in \mathscr{L}^{1}(\mathbb{R})$, the Fourier transform $\widehat{\chi_{[-a, a]}}$ is continuous and we must have

$$
\widehat{\chi_{[-a, a]}}(0)=\lim _{\xi \rightarrow 0} \widehat{\chi_{[-a, a]}}(\xi)=\lim _{\xi \rightarrow 0} \sqrt{\frac{2}{\pi}} \cdot \frac{\sin a \xi}{\xi}=\sqrt{\frac{2}{\pi}} \cdot a .
$$

5. Compute the Fourier transform of the function

$$
f(x)= \begin{cases}1-|x|, & |x| \leqslant 1 \\ 0, & |x|>1\end{cases}
$$

Solution. Again we may compute the Fourier transform directly for any $\xi \in \mathbb{R} \backslash\{0\}$:

$$
\begin{aligned}
\widehat{f}(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{-1}^{1}(1-|x|) e^{-i x \xi} \mathrm{~d} x=\sqrt{\frac{2}{\pi}} \int_{0}^{1}(1-x) \cos x \xi \mathrm{~d} x \\
& \left.\left.=\sqrt{\frac{2}{\pi}}\left(\frac{\sin x \xi}{\xi}\right]_{0}^{x=1}-\frac{x \sin x \xi}{\xi}\right]_{0}^{x=1}+\frac{1}{\xi} \int_{0}^{1} \sin x \xi \mathrm{~d} \xi\right) \\
& \left.=\sqrt{\frac{2}{\pi}}\left(\frac{\sin \xi}{\xi}-\frac{\sin \xi}{\xi}-\frac{\cos x \xi}{\xi^{2}}\right]_{0}^{x=1}\right) \\
& =\sqrt{\frac{2}{\pi}} \cdot \frac{-\cos \xi+1}{\xi^{2}}=\sqrt{\frac{2}{\pi}} \cdot \frac{2 \sin ^{2} \frac{\xi}{2}}{\xi^{2}} .
\end{aligned}
$$

Since clearly $f \in \mathscr{L}^{1}(\mathbb{R})$, we obtain $\widehat{f}(0)$ as in the previous exercise:

$$
\widehat{f}(0)=\lim _{\xi \rightarrow 0} \sqrt{\frac{2}{\pi}} \cdot \frac{2 \sin ^{2} \frac{\xi}{2}}{\xi^{2}}=\sqrt{\frac{2}{\pi}} \cdot 2 \cdot\left(\frac{1}{2}\right)^{2}=\frac{1}{\sqrt{2 \pi}}
$$

