
Introduction to Fourier Analysis
Home assignment 7

1. Let ϕ(x) =
∣∣x∣∣ for x ∈ [0, 1]. Extend ϕ to R as a 2-periodic function. Prove

that the formula

f(x) =
∞∑
n=0

(
3

4

)n
ϕ(4nx)

defines a continuous function on R.

Solution. Since
∣∣ϕ(x)

∣∣ 6 1 for all x ∈ R, the series defining f may be
compared to the absolutely converging geometric series

∑∞
n=0

(
3
4

)n, thereby
establishing that the series defining f converges uniformly.

2. We continue to study properties of ϕ defined in the first exercise. Fix
x0 ∈ R. For every non-negative integer m define a real number δm by the
conditions

∣∣δm∣∣ = 4−m/2 and the sign is fixed by the condition that there are
no integers between 4mx0 and 4m (x0 + δm). Consider the quotient

γn =
ϕ
(
4n(x0 + δm)

)
− ϕ(4nx0)

δm
.

Prove that

a) If n > m then γn = 0.

b) If 0 6 n 6 m, then
∣∣γn∣∣ 6 4n and

∣∣γm∣∣ = 4m.

Solution. a) This follows from the fact that ϕ is 2-periodic and the sub-
sequent observation that when n > m, we have

ϕ
(
4n(x+ δm)

)
= ϕ

(
4nx± 22(n−m)−1

)
= ϕ(4nx) .

b) For 0 6 n < m the inequalities follow directly from the fact that ϕ is
Lipschitz and in fact ∣∣ϕ(x)− ϕ(y)

∣∣ 6 ∣∣x− y∣∣
for all x, y ∈ R. Finally, the equality

∣∣γm∣∣ = 4m follows from the observation
that since the sign of δm was chosen in such a way that there are no integers
between 4m (x0 + δm) and 4mx0, the part of the graph of ϕ between those
values looks like a line segment of slope ±1, and thus

∣∣γm∣∣ =

∣∣∣∣∣ϕ
(
4n(x0 + δm)

)
− ϕ(4nx0)

δm

∣∣∣∣∣ =

∣∣∣∣4m (x0 + δm)− 4mx0

δm

∣∣∣∣ = 4m.



3. This continues the study of f and ϕ defined in the previous exercises.
Prove that ∣∣∣∣f(x0 + δm)− f(x0)

δm

∣∣∣∣ > 1

2
(3m + 1) .

Conclude that f is not differentiable at x0.

Solution. We use the symbols γ0, γ1, . . . defined in the previous exercise.
Since

∣∣γ0

∣∣ 6 40 = 1 and
∣∣γm∣∣ = 4m, we have∣∣∣∣(3

4

)m
γm + γ0

∣∣∣∣ > ∣∣∣∣(3

4

)m
|γm| − |γ0|

∣∣∣∣ > 3m − 1.

Similarly, we may estimate∣∣∣∣∣
m−1∑
n=1

(
3

4

)n
γn

∣∣∣∣∣ 6
m−1∑
n=1

(
3

4

)n∣∣γn∣∣ 6 m−1∑
n=1

3n = 3 · 3
m−1 − 1

3− 1
=

3m − 3

2
.

Combining the above estimates with the part a) of the previous exercise
gives the inequality∣∣∣∣f(x0 + δm)− f(x0)

δm

∣∣∣∣ =

∣∣∣∣∣
∞∑
n=0

(
3

4

)n
γn

∣∣∣∣∣ =

∣∣∣∣∣
m∑
n=0

(
3

4

)n
γn

∣∣∣∣∣
>

∣∣∣∣∣
∣∣∣∣(3

4

)m
γm + γ0

∣∣∣∣− ∣∣∣∣m−1∑
n=1

(
3

4

)n
γn

∣∣∣∣
∣∣∣∣∣ >

∣∣∣∣∣ ∣∣3m − 1
∣∣− ∣∣∣∣3m − 3

2

∣∣∣∣
∣∣∣∣∣ =

3m + 1

2
.

Finally, we conclude that the function f can not be differentiable at x0

since the difference quotient f(x0+h)−f(x0)
h

can not tend to a finite limit when
h tends to zero.

4. Compute the Fourier transform of the characteristic function of the interval
[−a, a], where a > 0.

Solution. For any ξ ∈ R \
{
0
}
, we have

χ̂[−a,a](ξ) =
1√
2π

∞∫
−∞

χ[−a,a](x) e
−ixξ dx

=
1√
2π

a∫
−a

e−ixξ dx =
e−iaξ − eiaξ

−
√

2πiξ
=

√
2

π
· sin aξ

ξ
.



Since χ[−a,a] ∈ L 1(R), the Fourier transform χ̂[−a,a] is continuous and we
must have

χ̂[−a,a](0) = lim
ξ−→0

χ̂[−a,a](ξ) = lim
ξ−→0

√
2

π
· sin aξ

ξ
=

√
2

π
· a.

5. Compute the Fourier transform of the function

f(x) =

{
1− |x| , |x| 6 1
0, |x| > 1.

Solution. Again we may compute the Fourier transform directly for any
ξ ∈ R \

{
0
}
:

f̂(ξ) =
1√
2π

1∫
−1

(1− |x|) e−ixξ dx =

√
2

π

1∫
0

(1− x) cosxξ dx

=

√
2

π

 sinxξ

ξ

]x=1

0

− x sinxξ

ξ

]x=1

0

+
1

ξ

1∫
0

sinxξ dξ


=

√
2

π

(
sin ξ

ξ
− sin ξ

ξ
− cosxξ

ξ2

]x=1

0

)

=

√
2

π
· − cos ξ + 1

ξ2
=

√
2

π
·
2 sin2 ξ

2

ξ2
.

Since clearly f ∈ L 1(R), we obtain f̂(0) as in the previous exercise:

f̂(0) = lim
ξ−→0

√
2

π
·
2 sin2 ξ

2

ξ2
=

√
2

π
· 2 ·
(

1

2

)2

=
1√
2π
.


