
Introduction to Fourier Analysis
Home assignment 6

1. Let γ : [a, b] −→ R2 be a differentiable parametrization for the closed
curve Γ. Prove that it is a parametrization by the arc length if and only if
the length of the curve from γ(a) to γ(s) for all s is equal to s− a, i.e.

s∫
a

∣∣γ′(t)∣∣ dt = s− a for all s ∈ [a, b].

Solution. If γ is a parametrization by the arc length, then the given condition
is trivially satisfied. Conversely, if we are given a curve with a parametrization
γ satisfying the given condition, then for any x, y ∈ [a, b], satisfying x < y,
we have

y∫
x

∣∣γ′(t)∣∣ dt =

y∫
a

∣∣γ′(t)∣∣ dt− x∫
a

∣∣γ′(t)∣∣ dt = y − a− (x− a) = y − x,

thereby showing that γ is a parametrization by the arc length.

2. Prove that any differentiable curve admits a parametrization by the arc
length.

Solution. Suppose that we have a continuous curve Γ with a parametrization
γ : [a, b] −→ R2 (a, b ∈ R, a < b) with piecewise continuously differentiable1

coordinate functions and satisfying |γ′(t)| > ε > 0 for all those t ∈ [a, b] for
which the derivative exists.

We consider the arc length function s : [a, b] −→ R defined by the formula

s(t) =

t∫
a

∣∣γ′(τ)
∣∣dτ

for all τ ∈ [a, b]. This function s is strictly positive and continuous on the
interval [a, b]. Thus s maps the interval [a, b] bijectively to some other interval

1Here we tacitly assume that the derivatives have finite limits from both sides of the
non-continuity points. For instance, in our terminology, a function α : [a, b] −→ R is C1

if and only if it is continuous and it has a continuous derivative on ]a, b[ which may be
extended to a continuous function on the whole interval [a, b].



[A,B], (A,B ∈ R, A < B). Furthermore, s is continuously differentiable on
any interval ]α, β[ (α, β ∈ [a, b], α < β) on which γ is C1, and for all t ∈ ]α, β[,

s′(t) =
∣∣γ′(t)∣∣.

That is, s is piecewise continuously differentiable on [a, b].
We may now consider the function r = s−1 : [A,B] −→ [a, b]. This is

piecewise continuously differentiable since the function s is, and furthermore,
for any point t on which r is differentiable,

r′(t) =
1

s′
(
r(t)

) =
1∣∣γ′(r(t))∣∣ .

Now the function γ ◦r : [A,B] −→ R2 is a new piecewise C1 parametrization
for Γ, and for this parametrization, we have for each t ∈ [A,B] that

t∫
A

∣∣(γ ◦ r)′(τ)
∣∣dτ =

t∫
A

∣∣γ′(r(τ)
)∣∣ · ∣∣r′(τ)

∣∣dτ
=

t∫
A

∣∣γ′(r(τ)
)∣∣ · dτ∣∣γ′(r(τ)

)∣∣dτ =

t∫
A

dτ = t− A.

We conclude γ ◦ r is the required arc length parametrization for Γ.

3. Prove the second part of Weyl’s criterion: if a sequence 〈ξi〉∞i=1 is equidi-
stributed then for all k ∈ Z \

{
0
}
we have

1

N

N∑
n=1

e2πikξn −→ 0 as N −→∞.

Solution. Let ε ∈ R+ be arbitrary. Let M ∈ Z+ be so large that 1
M
< ε

2
,

and define for each ` ∈
{

1, 2, . . . ,M
}
the interval

I`
def
=

[
`−1

M
,
`

M

[
.

The equidistribution of the sequence 〈ξn〉∞n=1 easily implies the equidistribu-
tion of the sequence 〈kξn〉∞n=1, which in turn implies the existence of a number
N0 ∈ Z+ such that for any integer N larger than N0, we have∣∣∣∣∣#

(
I` ∩

{
{kξn}

∣∣n∈{1, 2, . . . , N}})
N

− 1

M

∣∣∣∣∣ < 1

M2



for each ` ∈
{

1, 2, . . . ,M
}
. Define for each ` ∈

{
1, 2, . . . ,M

}
and each N ∈

Z+ the set of indices

A`N
def
=
{
n ∈

{
1, 2, . . . , N

} ∣∣∣ kξn ∈ I`

}
.

For notational simplicity we use standard notation and write e(x) instead of
the clumsier e2πix. Having done all the necessary preliminary work, we get
for all integers N greater than N0 and 4π

ε that∣∣∣∣∣ 1

N

N∑
n=1

e(kξn)

∣∣∣∣∣ =

∣∣∣∣∣ 1

N

M∑
`=1

(
− 1

M
e

(
`

M

)
+
∑
n∈A`N

e(kξn)

)∣∣∣∣∣
6

1

N

M∑
`=1

∣∣∣∣∣− 1

M
e

(
`

M

)
+
∑
n∈A`N

e

(
`

M

)∣∣∣∣∣+
1

N

M∑
`=1

∑
n∈A`N

∣∣∣∣e(kξn)−e
(
`

M

)∣∣∣∣
6

1

N
·M · N

M2
+

1

N
·M · 2π

M
=

1

M
+

2π

N
<
ε

2
+
ε

2
= ε.

4. Prove that the sequence 〈a log n〉∞n=1 is not equidistributed for any a ∈ R.

Solution. For a = 0 the claim is obvious whereas for a 6= 0 the claim follows
from Weyl’s criterion together with the observation that∣∣∣∣∣ 1

N

N∑
n=1

e(a log n)

∣∣∣∣∣ =

∣∣∣∣∣ 1

N

N∑
n=1

( n
N

)2πia∣∣∣∣∣ −−−−→N−→∞

∣∣∣∣∣∣
1∫

0

x2πiadx

∣∣∣∣∣∣ =
1

|2πia+ 1|
6= 0.

5. Suppose that f : R −→ C is a continuous function with period 1 and that
〈ξn〉∞n=1 is an equidistributed sequence in [0, 1[. Prove that if in addition

1∫
0

f(x) dx = 0,

then uniformly in x,

lim
N−→∞

1

N

N∑
n=1

f(x+ ξn) = 0.

Solution. Let us be given an arbitrarily small positive real number ε. Since
f is continuous and periodic, we may choose a trigonometric polynomial p
such that

∣∣f(x)− p(x)
∣∣ < ε

3
for all x ∈ R. Please note that the constant term

a0 of p must have absolute value smaller than ε
3
, for otherwise

1∫
0

∣∣f(x)− p(x)
∣∣dx >

∣∣∣∣∣∣
1∫

0

(f(x)− p(x)) dx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1∫

0

p(x) dx

∣∣∣∣∣∣ =
∣∣a0

∣∣ > ε

3
,



thereby implying that
∣∣f(x) − p(x)

∣∣ > ε
3
for some x ∈ R. Applying Weyl’s

criterion for each term of the polynomial p− a0, we conclude that

1

N

N∑
n=1

(
p(x+ ξn)− a0

)
−−−−−−−−−→

N−→∞
0,

and so for sufficiently large integers N , we have∣∣∣∣∣ 1

N

N∑
n=1

(
p(x+ ξn)− a0

)∣∣∣∣∣ < ε

3
.

Finally, we conclude that for sufficiently large integers N we have∣∣∣∣∣ 1

N

N∑
n=1

f(x+ ξn)

∣∣∣∣∣ 6 1

N

N∑
n=1

∣∣f(x+ ξn)−p(x+ ξn)
∣∣

+
1

N

∣∣∣∣∣
N∑
n=1

(
p(x+ ξn)−a0

)∣∣∣∣∣+ |a0| <
ε

3
+
ε

3
+
ε

3
= ε.

6. Let now f : R −→ C be a bounded measurable function and assume that

1∫
0

f(x) dx = 0.

Prove that

lim
N−→∞

1∫
0

∣∣∣∣∣ 1

N

N∑
n=1

f(x+ ξn)

∣∣∣∣∣
2

dx = 0.

Solution. Let us be given some arbitrarily small positive real number ε.
The basic L 2-theory of Fourier series allows us to choose a trigonometric
polynomial p such that

1∫
0

∣∣f(x)− p(x)
∣∣2 dx <

ε

2
,

and since the integral of f vanishes, we may suppose that the constant term
of p vanishes as well.

Using Weyl’s criterion termwise to p and its all translates we conclude
that

1

N

N∑
n=1

p(x+ ξn) −−−−→
N−→∞

0



for all x ∈ R. Hence the dominated convergence allows us to say that, for
sufficiently large integers N , we have

1∫
0

∣∣∣∣∣ 1

N

N∑
n=1

p(x+ ξn)

∣∣∣∣∣
2

dx <
ε

2
.

Combining the above considerations leads to the conclusion that, for suf-
ficiently large integers N , we have

1∫
0

∣∣∣∣∣ 1

N

N∑
n=1

f(x+ ξn)

∣∣∣∣∣
2

dx 6
1

N

N∑
n=1

1∫
0

∣∣f(x+ξn)−g(x+ξn)
∣∣2 dx

+

1∫
0

∣∣∣∣∣ 1

N

N∑
n=1

p(x+ξn)

∣∣∣∣∣
2

dx <
1

N
·N · ε

2
+
ε

2
= ε.


