INTRODUCTION TO FOURIER ANALYSIS
HOME ASSIGNMENT 6

1. Let v: [a,b] — R? be a differentiable parametrization for the closed
curve I'. Prove that it is a parametrization by the arc length if and only if
the length of the curve from «y(a) to v(s) for all s is equal to s — a, i.e.

/}7’(25)‘ dt =s—a forall s€|a,b.

Solution. If v is a parametrization by the arc length, then the given condition
is trivially satisfied. Conversely, if we are given a curve with a parametrization
7 satisfying the given condition, then for any z,y € [a,b], satisfying © < v,
we have

Jirwlae= [lrola- [lyola=y-o-@-a=y-=

thereby showing that ~ is a parametrization by the arc length.

2. Prove that any differentiable curve admits a parametrization by the arc
length.

Solution. Suppose that we have a continuous curve I' with a parametrization
v: [a,b] — R? (a,b € R, a < b) with piecewise continuously differentiable!
coordinate functions and satisfying |y/(t)| > € > 0 for all those t € [a,b] for
which the derivative exists.

We consider the arc length function s: [a,b] — R defined by the formula

s(t) = / by (7))

for all 7 € [a,b]. This function s is strictly positive and continuous on the
interval [a, b]. Thus s maps the interval [a, b] bijectively to some other interval

IHere we tacitly assume that the derivatives have finite limits from both sides of the
non-continuity points. For instance, in our terminology, a function «: [a,b] — R is C!
if and only if it is continuous and it has a continuous derivative on ]a, b[ which may be
extended to a continuous function on the whole interval [a, b].



[A, B], (A,B € R, A < B). Furthermore, s is continuously differentiable on
any interval |o, B[ (o, 8 € [a,b], a < 3) on which v is C!, and for all ¢ € ]a, 3],

That is, s is piecewise continuously differentiable on [a, b].

We may now consider the function r = s7': [A, B] — [a,b]. This is
piecewise continuously differentiable since the function s is, and furthermore,
for any point ¢t on which r is differentiable,

Now the function yor: [A, B] — R? is a new piecewise C'' parametrization
for T', and for this parametrization, we have for each ¢t € [A, B] that

/|(7 OT)/(T)‘dT = /‘7’(7“(7’))‘ . ‘r'(7‘)|d7’
A A ‘

_ /|,/(r(7))| g i A/dT —to A

We conclude 7 o r is the required arc length parametrization for I'.

3. Prove the second part of Weyl’s criterion: if a sequence (§;);-, is equidi-
stributed then for all k € Z\ {0} we have

N
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Solution. Let ¢ € R, be arbitrary. Let M € Z, be so large that ﬁ < 3,
and define for each ¢ € {1, 2,... ,M} the interval

(—1 ¢
71 M
¢ [M’M[

The equidistribution of the sequence (§,) -, easily implies the equidistribu-
tion of the sequence (k&,), -, which in turn implies the existence of a number
Ny € Z, such that for any integer N larger than Ny, we have
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for each ¢ € {1,2,...,M}. Define for each ¢ € {1,2,...,]\/[} and each N €
Z, the set of indices

Ay {ne {1,2,...,N} ’ k;fnefg}.

For notational simplicity we use standard notation and write e(x) instead of
the clumsier e?™. Having done all the necessary preliminary work, we get
for all integers N greater than Ny and 4F that

N
1
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4. Prove that the sequence (alogn) -, is not equidistributed for any a € R.

Solution. For a = 0 the claim is obvious whereas for a # 0 the claim follows
from Weyl’s criterion together with the observation that

1 N TL 2mia ; 7"md 1 0.
NZ(W p— / v T |2mia+1| 7
0

n=1
5. Suppose that f: R — C is a continuous function with period 1 and that
(€))7, is an equidistributed sequence in [0, 1[. Prove that if in addition

L
¥ Ze(alogn)

n=1
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[f@yaz=o

then uniformly in z,

Solution. Let us be given an arbitrarily small positive real number ¢. Since
fis Continuous and periodic, we may choose a trigonometric polynomial p
such that ‘ f(z (x)| : for all z € R. Please note that the constant term
ag of p must have absolute value smaller than £, for otherwise

1 1

/’f(f’f’) —p(a)|dz > /(f(w) —p(r))de| = /p(x)dw = |ao| > g

0 0



thereby implying that |f(:c) — p(az)‘ > 3 for some z € R. Applying Weyl’s
criterion for each term of the polynomial p — ag, we conclude that

—z (0 46) —a0) ——— 0,

N—0o0

and so for sufficiently large integers N, we have
| XN

N Z(p(x +&n) — ao)
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Finally, we conclude that for sufficiently large integers N we have

|sz””+5" NZ‘f“Lg" plz+ &)
1| € € ¢
+5 ;(p(a:+§n)—ag) + |ao| <§+§+§:5

6. Let now f: R — C be a bounded measurable function and assume that

1 1 N 2
22

Solution. Let us be given some arbitrarily small positive real number ¢.
The basic Z2-theory of Fourier series allows us to choose a trigonometric

polynomial p such that
1
2 9
1@ = sl e < 5,
0

and since the integral of f vanishes, we may suppose that the constant term
of p vanishes as well.

Using Weyl’s criterion termwise to p and its all translates we conclude
that

Prove that

lim
N—o0

N—o0
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for all x € R. Hence the dominated convergence allows us to say that, for
sufficiently large integers N, we have
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Combining the above considerations leads to the conclusion that, for suf-
ficiently large integers N, we have
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