Introduction to Fourier Analysis Home Assignment 6

1. Let $\gamma:[a, b] \longrightarrow \mathbb{R}^{2}$ be a differentiable parametrization for the closed curve Γ. Prove that it is a parametrization by the arc length if and only if the length of the curve from $\gamma(a)$ to $\gamma(s)$ for all s is equal to $s-a$, i.e.

$$
\int_{a}^{s}\left|\gamma^{\prime}(t)\right| \mathrm{d} t=s-a \quad \text { for all } s \in[a, b] .
$$

Solution. If γ is a parametrization by the arc length, then the given condition is trivially satisfied. Conversely, if we are given a curve with a parametrization γ satisfying the given condition, then for any $x, y \in[a, b]$, satisfying $x<y$, we have

$$
\int_{x}^{y}\left|\gamma^{\prime}(t)\right| \mathrm{d} t=\int_{a}^{y}\left|\gamma^{\prime}(t)\right| \mathrm{d} t-\int_{a}^{x}\left|\gamma^{\prime}(t)\right| \mathrm{d} t=y-a-(x-a)=y-x
$$

thereby showing that γ is a parametrization by the arc length.
2. Prove that any differentiable curve admits a parametrization by the arc length.

Solution. Suppose that we have a continuous curve Γ with a parametrization $\gamma:[a, b] \longrightarrow \mathbb{R}^{2}(a, b \in \mathbb{R}, a<b)$ with piecewise continuously differentiable ${ }^{1}$ coordinate functions and satisfying $\left|\gamma^{\prime}(t)\right| \geqslant \varepsilon>0$ for all those $t \in[a, b]$ for which the derivative exists.

We consider the arc length function $s:[a, b] \longrightarrow \mathbb{R}$ defined by the formula

$$
s(t)=\int_{a}^{t}\left|\gamma^{\prime}(\tau)\right| \mathrm{d} \tau
$$

for all $\tau \in[a, b]$. This function s is strictly positive and continuous on the interval $[a, b]$. Thus s maps the interval $[a, b]$ bijectively to some other interval

[^0]$[A, B],(A, B \in \mathbb{R}, A<B)$. Furthermore, s is continuously differentiable on any interval $] \alpha, \beta\left[(\alpha, \beta \in[a, b], \alpha<\beta)\right.$ on which γ is C^{1}, and for all $\left.t \in\right] \alpha, \beta[$,
$$
s^{\prime}(t)=\left|\gamma^{\prime}(t)\right| .
$$

That is, s is piecewise continuously differentiable on $[a, b]$.
We may now consider the function $r=s^{-1}:[A, B] \longrightarrow[a, b]$. This is piecewise continuously differentiable since the function s is, and furthermore, for any point t on which r is differentiable,

$$
r^{\prime}(t)=\frac{1}{s^{\prime}(r(t))}=\frac{1}{\left|\gamma^{\prime}(r(t))\right|}
$$

Now the function $\gamma \circ r:[A, B] \longrightarrow \mathbb{R}^{2}$ is a new piecewise C^{1} parametrization for Γ, and for this parametrization, we have for each $t \in[A, B]$ that

$$
\begin{aligned}
\int_{A}^{t}\left|(\gamma \circ r)^{\prime}(\tau)\right| \mathrm{d} \tau=\int_{A}^{t} & \left|\gamma^{\prime}(r(\tau))\right| \cdot\left|r^{\prime}(\tau)\right| \mathrm{d} \tau \\
& =\int_{A}^{t}\left|\gamma^{\prime}(r(\tau))\right| \cdot \frac{\mathrm{d} \tau}{\left|\gamma^{\prime}(r(\tau))\right|} \mathrm{d} \tau=\int_{A}^{t} \mathrm{~d} \tau=t-A .
\end{aligned}
$$

We conclude $\gamma \circ r$ is the required arc length parametrization for Γ.
3. Prove the second part of Weyl's criterion: if a sequence $\left\langle\xi_{i}\right\rangle_{i=1}^{\infty}$ is equidistributed then for all $k \in \mathbb{Z} \backslash\{0\}$ we have

$$
\frac{1}{N} \sum_{n=1}^{N} e^{2 \pi i k \xi_{n}} \longrightarrow 0 \quad \text { as } N \longrightarrow \infty
$$

Solution. Let $\varepsilon \in \mathbb{R}_{+}$be arbitrary. Let $M \in \mathbb{Z}_{+}$be so large that $\frac{1}{M}<\frac{\varepsilon}{2}$, and define for each $\ell \in\{1,2, \ldots, M\}$ the interval

$$
\mathscr{I}_{\ell} \stackrel{\text { def }}{=}\left[\frac{\ell-1}{M}, \frac{\ell}{M}[.\right.
$$

The equidistribution of the sequence $\left\langle\xi_{n}\right\rangle_{n=1}^{\infty}$ easily implies the equidistribution of the sequence $\left\langle k \xi_{n}\right\rangle_{n=1}^{\infty}$, which in turn implies the existence of a number $N_{0} \in \mathbb{Z}_{+}$such that for any integer N larger than N_{0}, we have

$$
\left|\frac{\#\left(\mathscr{I}_{\ell} \cap\left\{\left\{k \xi_{n}\right\} \mid n \in\{1,2, \ldots, N\}\right\}\right)}{N}-\frac{1}{M}\right|<\frac{1}{M^{2}}
$$

for each $\ell \in\{1,2, \ldots, M\}$. Define for each $\ell \in\{1,2, \ldots, M\}$ and each $N \in$ \mathbb{Z}_{+}the set of indices

$$
\mathscr{A}_{\ell N} \stackrel{\text { def }}{=}\left\{n \in\{1,2, \ldots, N\} \mid k \xi_{n} \in \mathscr{I}_{\ell}\right\} .
$$

For notational simplicity we use standard notation and write $e(x)$ instead of the clumsier $e^{2 \pi i x}$. Having done all the necessary preliminary work, we get for all integers N greater than N_{0} and $\frac{4 \pi}{\varepsilon}$ that

$$
\begin{aligned}
& \left|\frac{1}{N} \sum_{n=1}^{N} e\left(k \xi_{n}\right)\right|=\left|\frac{1}{N} \sum_{\ell=1}^{M}\left(-\frac{1}{M} e\left(\frac{\ell}{M}\right)+\sum_{n \in \mathscr{A}_{\ell N}} e\left(k \xi_{n}\right)\right)\right| \\
\leqslant & \frac{1}{N} \sum_{\ell=1}^{M}\left|-\frac{1}{M} e\left(\frac{\ell}{M}\right)+\sum_{n \in \mathscr{A}_{\ell N}} e\left(\frac{\ell}{M}\right)\right|+\frac{1}{N} \sum_{\ell=1}^{M} \sum_{n \in \mathscr{A}_{\ell N}}\left|e\left(k \xi_{n}\right)-e\left(\frac{\ell}{M}\right)\right| \\
\leqslant & \frac{1}{N} \cdot M \cdot \frac{N}{M^{2}}+\frac{1}{N} \cdot M \cdot \frac{2 \pi}{M}=\frac{1}{M}+\frac{2 \pi}{N}<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon .
\end{aligned}
$$

4. Prove that the sequence $\langle a \log n\rangle_{n=1}^{\infty}$ is not equidistributed for any $a \in \mathbb{R}$.

Solution. For $a=0$ the claim is obvious whereas for $a \neq 0$ the claim follows from Weyl's criterion together with the observation that

$$
\left|\frac{1}{N} \sum_{n=1}^{N} e(a \log n)\right|=\left|\frac{1}{N} \sum_{n=1}^{N}\left(\frac{n}{N}\right)^{2 \pi i a}\right| \xrightarrow[N \longrightarrow \infty]{ }\left|\int_{0}^{1} x^{2 \pi i a} \mathrm{~d} x\right|=\frac{1}{|2 \pi i a+1|} \neq 0 .
$$

5. Suppose that $f: \mathbb{R} \longrightarrow \mathbb{C}$ is a continuous function with period 1 and that $\left\langle\xi_{n}\right\rangle_{n=1}^{\infty}$ is an equidistributed sequence in $[0,1[$. Prove that if in addition

$$
\int_{0}^{1} f(x) \mathrm{d} x=0,
$$

then uniformly in x,

$$
\lim _{N \longrightarrow \infty} \frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)=0 .
$$

Solution. Let us be given an arbitrarily small positive real number ε. Since f is continuous and periodic, we may choose a trigonometric polynomial p such that $|f(x)-p(x)|<\frac{\varepsilon}{3}$ for all $x \in \mathbb{R}$. Please note that the constant term a_{0} of p must have absolute value smaller than $\frac{\varepsilon}{3}$, for otherwise

$$
\int_{0}^{1}|f(x)-p(x)| \mathrm{d} x \geqslant\left|\int_{0}^{1}(f(x)-p(x)) \mathrm{d} x\right|=\left|\int_{0}^{1} p(x) \mathrm{d} x\right|=\left|a_{0}\right| \geqslant \frac{\varepsilon}{3}
$$

thereby implying that $|f(x)-p(x)| \geqslant \frac{\varepsilon}{3}$ for some $x \in \mathbb{R}$. Applying Weyl's criterion for each term of the polynomial $p-a_{0}$, we conclude that

$$
\frac{1}{N} \sum_{n=1}^{N}\left(p\left(x+\xi_{n}\right)-a_{0}\right) \xrightarrow[N \longrightarrow \infty]{ } 0
$$

and so for sufficiently large integers N, we have

$$
\left|\frac{1}{N} \sum_{n=1}^{N}\left(p\left(x+\xi_{n}\right)-a_{0}\right)\right|<\frac{\varepsilon}{3} .
$$

Finally, we conclude that for sufficiently large integers N we have

$$
\begin{aligned}
\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right| \leqslant & \frac{1}{N} \sum_{n=1}^{N}\left|f\left(x+\xi_{n}\right)-p\left(x+\xi_{n}\right)\right| \\
& +\frac{1}{N}\left|\sum_{n=1}^{N}\left(p\left(x+\xi_{n}\right)-a_{0}\right)\right|+\left|a_{0}\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

6. Let now $f: \mathbb{R} \longrightarrow \mathbb{C}$ be a bounded measurable function and assume that

$$
\int_{0}^{1} f(x) \mathrm{d} x=0 .
$$

Prove that

$$
\lim _{N \longrightarrow \infty} \int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right|^{2} \mathrm{~d} x=0 .
$$

Solution. Let us be given some arbitrarily small positive real number ε. The basic \mathscr{L}^{2}-theory of Fourier series allows us to choose a trigonometric polynomial p such that

$$
\int_{0}^{1}|f(x)-p(x)|^{2} \mathrm{~d} x<\frac{\varepsilon}{2}
$$

and since the integral of f vanishes, we may suppose that the constant term of p vanishes as well.

Using Weyl's criterion termwise to p and its all translates we conclude that

$$
\frac{1}{N} \sum_{n=1}^{N} p\left(x+\xi_{n}\right) \xrightarrow[N \longrightarrow \infty]{ } 0
$$

for all $x \in \mathbb{R}$. Hence the dominated convergence allows us to say that, for sufficiently large integers N, we have

$$
\int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} p\left(x+\xi_{n}\right)\right|^{2} \mathrm{~d} x<\frac{\varepsilon}{2}
$$

Combining the above considerations leads to the conclusion that, for sufficiently large integers N, we have

$$
\begin{aligned}
\int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} f\left(x+\xi_{n}\right)\right|^{2} \mathrm{~d} x \leqslant & \frac{1}{N} \sum_{n=1}^{N} \int_{0}^{1}\left|f\left(x+\xi_{n}\right)-g\left(x+\xi_{n}\right)\right|^{2} \mathrm{~d} x \\
& +\int_{0}^{1}\left|\frac{1}{N} \sum_{n=1}^{N} p\left(x+\xi_{n}\right)\right|^{2} \mathrm{~d} x<\frac{1}{N} \cdot N \cdot \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon
\end{aligned}
$$

[^0]: ${ }^{1}$ Here we tacitly assume that the derivatives have finite limits from both sides of the non-continuity points. For instance, in our terminology, a function $\alpha:[a, b] \longrightarrow \mathbb{R}$ is C^{1} if and only if it is continuous and it has a continuous derivative on $] a, b[$ which may be extended to a continuous function on the whole interval $[a, b]$.

