Introduction to Fourier Analysis Home Assignment 5

1. Assume that f is a 2π-periodic integrable function. Show that for all $n \in \mathbb{Z} \backslash\{0\}$, we have

$$
\widehat{f}(n)=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(x+\frac{\pi}{n}\right) e^{-i n x} \mathrm{~d} x
$$

and hence

$$
\widehat{f}(n)=\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left(f(x)-f\left(x+\frac{\pi}{n}\right)\right) e^{-i n x} \mathrm{~d} x
$$

Solution. Because of the 2π-periodicity of the integrand in the definition of the Fourier coefficients, we have for any $n \in \mathbb{Z} \backslash\{0\}$ that

$$
\begin{aligned}
\widehat{f}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} \mathrm{~d} x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x & \left.+\frac{\pi}{n}\right) e^{-i n\left(x+\frac{\pi}{n}\right)} \mathrm{d} x \\
& =-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(x+\frac{\pi}{n}\right) e^{-i n x} \mathrm{~d} x
\end{aligned}
$$

The second formula is obtained by combining the definition of the Fourier coefficients with the formula just obtained: For all $n \in \mathbb{Z} \backslash\{0\}$ we have

$$
\begin{aligned}
\widehat{f}(n) & =\frac{1}{2}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} \mathrm{~d} x-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(x+\frac{\pi}{n}\right) e^{-i n x} \mathrm{~d} x\right) \\
& =\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left(f(x)-f\left(x+\frac{\pi}{n}\right)\right) e^{-i n x} \mathrm{~d} x
\end{aligned}
$$

2. Assume that the function f above also satisfies the Hölder condition with exponent α,

$$
|f(x+h)-f(x)| \leqslant C|h|^{\alpha},
$$

for some $0<\alpha \leqslant 1$ and all real x and h. Show that the Fourier coefficients of f satisfy

$$
\widehat{f}(n)=O\left(|n|^{-\alpha}\right) .
$$

Solution. This follows directly from the second conclusion of the previous exercise: For any $n \in \mathbb{Z} \backslash\{0\}$, we have

$$
\begin{aligned}
|\widehat{f}(n)| & =\left|\frac{1}{4 \pi} \int_{-\pi}^{\pi}\left(f(x)-f\left(x+\frac{\pi}{n}\right)\right) e^{-i n x} \mathrm{~d} x\right| \\
& \leqslant \frac{1}{4 \pi} \int_{-\pi}^{\pi}\left|f(x)-f\left(x+\frac{\pi}{n}\right)\right| \mathrm{d} x \leqslant \frac{1}{4 \pi} \int_{-\pi}^{\pi} C\left|\frac{\pi}{n}\right|^{\alpha} \mathrm{d} x=\frac{C \pi^{\alpha}}{2|n|^{\alpha}}
\end{aligned}
$$

3. Prove that the result given in the previous exercise is sharp by showing that the function

$$
f(x)=\sum_{k=0}^{\infty} 2^{-k \alpha} e^{i 2^{k} x}
$$

where $0<\alpha<1$, satisfies the Hölder condition with exponent α and that

$$
\widehat{f}(N)=N^{-\alpha},
$$

when $N=2^{k}$.
Solution. We can easily compare the series defining the function f to a geometric series to see that it converges absolutely everywhere. We conclude that the series defining the function f is the Fourier series of f, the series converges pointwise everywhere, and due to the uniqueness property of Fourier series, we have $\widehat{f}\left(2^{k}\right)=2^{-k \alpha}$ for all non-negative integers k.

To see the Hölder continuity of f, we let x and h be arbitrary real numbers. We first observe that it suffices to prove the Hölder continuity only in the case $h \in] 0,2 \pi[$, since if that case has already been taken care of, the 2π periodicity of f implies that for any $n \in \mathbb{Z}_{+}$and any $h \in[0,2 \pi[$, we have also

$$
|f(x+h+2 \pi n)-f(x)|=|f(x+h)-f(x)|<_{\alpha}|h|^{\alpha} \leqslant|h+2 \pi n|^{\alpha} .
$$

The proof of Hölder continuity will require the following simple observations. For any $x \in \mathbb{R}$, we trivially have $\left|e^{i x}-1\right| \leqslant 2$, and it is a simple geometrical observation that for $x \in[-1,1]$, we have $\left|e^{i x}-1\right| \leqslant|x|$. Now, for any $x \in \mathbb{R}$ and any $h \in] 0,2 \pi[$, we have

$$
\begin{aligned}
& |f(x+h)-f(x)|=\left|\sum_{k=0}^{\infty} 2^{-k \alpha} e^{i 2^{k}(x+h)}-\sum_{k=0}^{\infty} 2^{-k \alpha} e^{i 2^{k} x}\right| \\
\leqslant & \sum_{k=0}^{\infty} 2^{-k \alpha}\left|e^{i 2^{k} h}-1\right|
\end{aligned}=\sum_{\substack{k \geqslant 0 \\
1 \leqslant 2^{k} \leqslant|h|^{-1}}} 2^{-k \alpha}\left|e^{i 2^{k} h}-1\right|+\sum_{\substack{k \geqslant 0 \\
2^{k}>|h|^{-1}}} 2^{-k \alpha}\left|e^{i 2^{k} h}-1\right| .
$$

$$
\begin{aligned}
& \leqslant \sum_{\substack{k \geqslant 0 \\
1 \leqslant 2^{k} \leqslant|h|^{-1}}} 2^{-k \alpha} \cdot 2^{k}|h|+\sum_{\substack{k \geqslant 0 \\
2^{k}>|h|^{-1}}} 2^{-k \alpha} \cdot 2=|h| \sum_{\substack{k \geqslant 0 \\
1 \leqslant 2^{k} k|h|^{-1}}} 2^{k(1-\alpha)}+2 \sum_{\substack{k \geqslant 0 \\
2^{k}>|h|^{-1}}}\left(2^{-\alpha}\right)^{k} \\
& \leqslant|h| \cdot \frac{\left.2^{(1-\alpha)(1+1 \mathrm{~b}}|h|^{-1}\right)-1}{2^{1-\alpha}-1}+2 \cdot \frac{\left(2^{-\alpha}\right)^{\mathrm{b}|h|^{-1}}}{1-2^{-\alpha}} \\
& =\frac{\left(2^{1-\alpha}|h|^{\alpha-1}-1\right)|h|}{2^{1-\alpha}-1}+\frac{2|h|^{\alpha}}{1-2^{-\alpha}} \leqslant\left(\frac{2^{1-\alpha}}{2^{1-\alpha}-1}+\frac{2}{1-2^{-\alpha}}\right)|h|^{\alpha},
\end{aligned}
$$

where lb signifies the logarithm in base two.
4. Assume that f is a 2π-periodic function that satisfies a Lipschitz condition with constant K, i.e.

$$
|f(x)-f(y)| \leqslant K|x-y| \quad \text { for all } x \text { and } y
$$

Define for $h>0$

$$
g_{h}(x)=f(x+h)-f(x-h) .
$$

Prove that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g_{h}(x)\right|^{2} \mathrm{~d} x=\sum_{n=-\infty}^{\infty} 4|\sin n h|^{2}|\widehat{f}(n)|^{2}
$$

and show that

$$
\sum_{n=-\infty}^{\infty}|\sin n h|^{2}|\widehat{f}(n)|^{2} \leqslant K^{2} h^{2}
$$

Solution. The Lipschitz condition implies that f and g are continuous on the interval $[-\pi, \pi]$ and hence it is clear that they are periodic \mathscr{L}^{2}-functions. The proposed equality is an immediate consequence of Parseval's formula and the observation that for all $n \in \mathbb{Z}$, we have

$$
\begin{aligned}
\widehat{g_{h}}(n)=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x+h)-f(x-h)) e^{-i n x} \mathrm{~d} x \\
=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n(x-h)} \mathrm{d} x-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n(x+h)} \mathrm{d} x \\
\quad=\widehat{f}(n) e^{i n h}-\widehat{f}(n) e^{-i n h}=2 i \widehat{f}(n) \sin n h .
\end{aligned}
$$

The inequality follows easily:

$$
\begin{aligned}
& 4 \sum_{n=-\infty}^{\infty} \sin ^{2} n h|\widehat{f}(n)|^{2}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|g_{h}(x)\right|^{2} \mathrm{~d} x \\
& \quad=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x+h)-f(x-h)|^{2} \mathrm{~d} x \leqslant \frac{1}{2 \pi} \int_{-\pi}^{\pi}|K \cdot 2 h|^{2} \mathrm{~d} x=4 K^{2}|h|^{2}
\end{aligned}
$$

5. Let p be a positive integer and f as in the previous exercise. By choosing $h=\frac{\pi}{2^{p+1}}$ above show that

$$
\sum_{2^{p-1}<|n| \leqslant 2^{p}}|\widehat{f}(n)|^{2} \leqslant \frac{K^{2} \pi^{2}}{2^{2 p+1}}
$$

Solution. We first observe that $|\sin x| \geqslant \frac{1}{\sqrt{2}}$ for all $x \in\left[-\frac{\pi}{2},-\frac{\pi}{4}\right] \cup\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$. Then we obtain from the inequality which was proved in the previous exercise that

$$
\begin{aligned}
\frac{K^{2} \pi^{2}}{2^{2 p+2}}=K^{2}\left|\frac{\pi}{2^{p+1}}\right|^{2} \geqslant & \sum_{n=-\infty}^{\infty} \sin ^{2} \frac{n \pi}{2^{p+1}}|\widehat{f}(n)|^{2} \geqslant \sum_{2^{p-1}<|n| \leqslant 2^{p}} \sin ^{2} \frac{n \pi}{2^{p+1}}|\widehat{f}(n)|^{2} \\
& \geqslant \sum_{2^{p-1}<|n| \leqslant 2^{p}}\left(\frac{1}{\sqrt{2}}\right)^{2}|\widehat{f}(n)|^{2}=\frac{1}{2} \sum_{2^{p-1}<|n| \leqslant 2^{p}}|\widehat{f}(n)|^{2} .
\end{aligned}
$$

6. Let again f be as above. By estimating the sum $\sum_{2^{p-1}<|n| \leqslant 2^{p}}|\widehat{f}(n)|$ prove that the Fourier series of f converges absolutely.

Solution. Using the inequality from the previous exercise and the Cauchy-Schwarz-Bunyakovsky inequality, we get

$$
\sum_{2^{p-1}<|n| \leqslant 2^{p}}|\widehat{f}(n)| \leqslant \sqrt{\sum_{2^{p-1}<|n| \leqslant 2^{p}} 1^{2}} \sqrt{\sum_{2^{p-1}<|n| \leqslant 2^{p}}|\widehat{f}(n)|^{2}} \leqslant \sqrt{2^{p}} \sqrt{\frac{K^{2} \pi^{2}}{2^{2 p+1}}}=\frac{K \pi}{2^{\frac{p+1}{2}}} .
$$

Therefore

$$
\sum_{|n|>1}|\widehat{f}(n)|=\sum_{p=1}^{\infty} \sum_{2^{p-1}<|n| \leqslant 2^{p}}|\widehat{f}(n)| \leqslant K \pi \sum_{p=1}^{\infty}\left(\frac{1}{\sqrt{2}}\right)^{p+1}=\frac{K \pi}{2\left(1-\frac{1}{\sqrt{2}}\right)}<\infty .
$$

