INTRODUCTION TO FOURIER ANALYSIS
HOME ASSIGNMENT 5

1. Assume that f is a 27-periodic integrable function. Show that for all
n € Z\{0}, we have
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Solution. Because of the 2m-periodicity of the integrand in the definition of
the Fourier coefficients, we have for any n € Z \ {0} that
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The second formula is obtained by combining the definition of the Fourier
coefficients with the formula just obtained: For all n € Z \{0} we have
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2. Assume that the function f above also satisfies the Hélder condition with
exponent «,

|[f(z+h) = f@)] < ClA]",
for some 0 < o« < 1 and all real x and h. Show that the Fourier coefficients
of f satisty
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Solution. This follows directly from the second conclusion of the previous
exercise: For any n € Z\ {0}, we have
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3. Prove that the result given in the previous exercise is sharp by showing
that the function
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where 0 < o < 1, satisfies the Holder condition with exponent v and that
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Solution. We can easily compare the series defining the function f to a
geometric series to see that it converges absolutely everywhere. We conclude
that the series defining the function f is the Fourier series of f, the series con-
verges pointwise everywhere, and due to the uniqueness property of Fourier
series, we have f (2’“) = 2% for all non-negative integers k.

To see the Holder continuity of f, we let x and h be arbitrary real numbers.
We first observe that it suffices to prove the Holder continuity only in the
case h € |0, 27, since if that case has already been taken care of, the 27-
periodicity of f implies that for any n € Z, and any h € [0, 27[, we have
also

|f(z+ h+2mn) — f(z)| =|f(z+h) - f(z)] <a |h}a < |h+ 2mn|”.

The proof of Holder continuity will require the following simple obser-
vations. For any = € R, we trivially have |eix — 1‘ < 2, and it is a simple
geometrical observation that for z € [—1,1], we have ‘em’ — 1‘ < }x! Now,
for any x € R and any h € ]0, 27|, we have
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where 1b signifies the logarithm in base two.

4. Assume that f is a 2w-periodic function that satisfies a Lipschitz condition
with constant K, i.e.

\f(ﬁ)—f(y)| <K|x—y| for all x and y.

Define for A > 0
gn(z) = flxz +h) — f(x —h).
Prove that
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Solution. The Lipschitz condition implies that f and g are continuous on
the interval [—, 7| and hence it is clear that they are periodic .Z?-functions.
The proposed equality is an immediate consequence of Parseval’s formula
and the observation that for all n € Z, we have
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The inequality follows easily:
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5. Let p be a positive integer and f as in the previous exercise. By choosing
h = 5557 above show that
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Solution. We first observe that ‘sinx| > % for all x € [—g, —%] U [%, %}

Then we obtain from the inequality which was proved in the previous exercise
that
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6. Let again f be as above. By estimating the sum Zzp,1<|n|<2p|f(n)| prove
that the Fourier series of f converges absolutely.

Solution. Using the inequality from the previous exercise and the Cauchy—
Schwarz—Bunyakovsky inequality, we get
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Therefore
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