Introduction to Fourier Analysis Home Assignment 4

1. Let $f:[-\pi, \pi] \longrightarrow \mathbb{R}, f(\vartheta)=|\vartheta|$. Use Parseval's formula to compute the sums

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

Solution. In the fifth exercise of the first exercise set we proved that the Fourier coefficients of f are given by the formulas

$$
\widehat{f}(n)= \begin{cases}\frac{\pi}{2} & \Longleftarrow n=0 \\ 0 & \Longleftarrow n \neq 0 \text { and } 2 \mid n \\ \frac{-2}{\pi n^{2}} & \Longleftarrow 2 \nmid n,\end{cases}
$$

for all $n \in \mathbb{Z}$. Parseval's formula now says that

$$
\frac{\pi^{2}}{3}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|\vartheta|^{2} \mathrm{~d} \vartheta=\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|^{2}=\frac{\pi^{2}}{4}+2 \sum_{\substack{n>1 \\ 2 \nmid n}}\left(-\frac{2}{\pi n^{2}}\right)^{2}=\frac{\pi^{2}}{4}+\frac{8}{\pi^{2}} \sum_{\substack{n>1 \\ 2 \nmid n}} \frac{1}{n^{4}},
$$

and thus

$$
\sum_{\substack{n \geq 1 \\ 2 \nmid n}} \frac{1}{n^{4}}=\frac{\pi^{2}}{8}\left(\frac{\pi^{2}}{3}-\frac{\pi^{2}}{4}\right)=\frac{\pi^{2}}{8} \cdot \frac{\pi^{2}}{12}=\frac{\pi^{4}}{96} .
$$

As in the exercise 1.6, it is easy to obtain the other series. Since

$$
\left(1-\frac{1}{16}\right) \sum_{n=1}^{\infty} \frac{1}{n^{4}}=\sum_{n=1}^{\infty} \frac{1}{n^{4}}-\sum_{n=1}^{\infty} \frac{1}{(2 n)^{4}}=\sum_{\substack{n \geqslant 1 \\ 2 \nmid n}} \frac{1}{n^{4}}=\frac{\pi^{4}}{96},
$$

we must have

$$
\sum_{n=1}^{\infty} \frac{1}{n^{4}}=\frac{16}{15} \cdot \frac{\pi^{4}}{96}=\frac{\pi^{4}}{90} .
$$

2. Let f be the 2π-periodic odd function defined on $[0, \pi]$ by $f(\vartheta)=\vartheta(\pi-\vartheta)$. Prove that

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{6}}=\frac{\pi^{6}}{960} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}
$$

Solution. We first compute the square of the \mathscr{L}^{2}-norm of the function f in the interval $[-\pi, \pi]$:

$$
\begin{aligned}
\int_{-\pi}^{\pi}|f(\vartheta)|^{2} \mathrm{~d} \vartheta & =2 \int_{0}^{\pi} \vartheta^{2}(\pi-\vartheta)^{2} \mathrm{~d} \vartheta=2 \int_{0}^{\pi}\left(\pi^{2} \vartheta^{2}-2 \pi \vartheta^{3}+\vartheta^{4}\right) \mathrm{d} \vartheta \\
& \left.=2\left(\pi^{2} \cdot \frac{\vartheta^{3}}{3}-2 \pi \cdot \frac{\vartheta^{4}}{4}+\frac{\vartheta^{5}}{5}\right)\right]_{0}^{\vartheta=\pi}=\frac{2 \pi^{5}}{3}-\pi^{5}+\frac{2 \pi^{5}}{5}=\frac{\pi^{5}}{15}
\end{aligned}
$$

We recall that in the fourth exercise of the first exercise set we proved for all $n \in \mathbb{Z}$ that the $n^{\text {th }}$ Fourier coefficient of f vanishes if n is even and is equal to $-\frac{4 i}{\pi n^{3}}$ if n is odd. By Parseval's formula, we have

$$
\frac{\pi^{4}}{30}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(\vartheta)|^{2} \mathrm{~d} \vartheta=\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|^{2}=2 \sum_{\substack{n>1 \\ 2 \not n n}}\left|-\frac{4 i}{\pi n^{3}}\right|^{2}=\frac{32}{\pi^{2}} \sum_{\substack{n>1 \\ 2 \not n}} \frac{1}{n^{6}},
$$

and thus

$$
\sum_{\substack{n \geqslant 1 \\ 2 \nmid n}} \frac{1}{n^{6}}=\frac{\pi^{2}}{32} \cdot \frac{\pi^{4}}{30}=\frac{\pi^{6}}{960} .
$$

In the same way as before we reason that

$$
\left(1-\frac{1}{64}\right) \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\sum_{n=1}^{\infty} \frac{1}{n^{6}}-\sum_{n=1}^{\infty} \frac{1}{(2 n)^{6}}=\sum_{\substack{n \geqslant 1 \\ 2 \not n}} \frac{1}{n^{6}}=\frac{\pi^{6}}{960},
$$

and hence

$$
\sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{64}{63} \cdot \frac{\pi^{6}}{960}=\frac{\pi^{6}}{945} .
$$

3. Show that for α not an integer, the Fourier series of

$$
\frac{\pi}{\sin \pi \alpha} e^{i(\pi-x) \alpha}, \quad x \in[0,2 \pi],
$$

is given by

$$
\sum_{n=-\infty}^{\infty} \frac{e^{i n x}}{n+\alpha}
$$

Solution. This is just a straightforward computation: Let $n \in \mathbb{Z}$. Then the $n^{\text {th }}$ Fourier coefficient of the given function must be

$$
\begin{array}{r}
\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\pi}{\sin \pi \alpha} e^{i(\pi-x) \alpha} e^{-i n x} \mathrm{~d} x=\frac{e^{i \pi \alpha}}{2 \sin \pi \alpha} \int_{0}^{2 \pi} e^{-i(n+\alpha) x} \mathrm{~d} x \\
\left.\quad=\frac{e^{i \pi \alpha}}{2 \sin \pi \alpha} \cdot \frac{e^{-i(n+\alpha) x}}{-i(n+\alpha)}\right]_{0}^{2 \pi}=\frac{e^{i \pi \alpha}\left(e^{-2 i \pi \alpha}-1\right)}{-2 i(n+\alpha) \sin \pi \alpha} \\
\quad=\frac{e^{i \pi \alpha}-e^{-i \pi \alpha}}{2 i} \cdot \frac{1}{(n+\alpha) \sin \pi \alpha}=\frac{1}{n+\alpha},
\end{array}
$$

as required.
4. Assume that the complex sequence $\left\langle a_{n}\right\rangle$ has the property that

$$
\sum\left|a_{n} b_{n}\right|<\infty
$$

for all complex sequences $\left\langle b_{n}\right\rangle$ such that $\sum\left|b_{n}\right|^{2}<\infty$. Prove that $\sum\left|a_{n}\right|^{2}<\infty$.
Solution. We shall prove the claim in contrapositive form. Let $\left\langle a_{n}\right\rangle_{n=1}^{\infty}$ be an arbitrary sequence of complex numbers such that $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}=\infty$. We first suppose that the sequence $\left\langle a_{n}\right\rangle_{n=1}^{\infty}$ is bounded, i.e. that $\left|a_{n}\right| \leqslant M$ for all $n \in \mathbb{Z}_{+}$for some $M \in \mathbb{R}_{+}$. Then we may find disjoint subsets E_{1}, E_{2}, \ldots of \mathbb{Z}_{+}such that

$$
\sum_{n \in E_{k}}\left|a_{n}\right|^{2} \in[M, 2 M[
$$

for all $k \in \mathbb{Z}_{+}$. We define a sequence $\left\langle b_{n}\right\rangle_{n=1}^{\infty}$ of complex numbers by defining for all $n \in \mathbb{Z}_{+}$the number b_{n} to be $\frac{1}{k} a_{n}$, if $n \in E_{k}$, for some $k \in \mathbb{Z}_{+}$. Otherwise we let $b_{n}=0$. Then the sequence $\left\langle b_{n}\right\rangle_{n=1}^{\infty}$ is in ℓ^{2} since

$$
\sum_{n=1}^{\infty}\left|b_{n}\right|^{2}=\sum_{k=1}^{\infty} \frac{1}{k^{2}} \sum_{n \in E_{k}}\left|a_{n}\right|^{2}<2 M \sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty,
$$

and yet

$$
\sum_{n=1}^{\infty}\left|a_{n} b_{n}\right|=\sum_{k=1}^{\infty} \frac{1}{k} \sum_{n \in E_{k}}\left|a_{n}\right|^{2} \geqslant M \sum_{k=1}^{\infty} \frac{1}{k}=\infty .
$$

Next we assume that the sequence $\left\langle a_{n}\right\rangle_{n=1}^{\infty}$ is unbounded. Let $\left\langle a_{n_{k}}\right\rangle_{k=1}^{\infty}$ be a subsequence of $\left\langle a_{n}\right\rangle_{n=1}^{\infty}$ such that $\left|a_{k_{1}}\right|<\left|a_{k_{2}}\right|<\left|a_{k_{3}}\right|<\ldots$ We define a
sequence of complex numbers $\left\langle b_{n}\right\rangle_{n=1}^{\infty}$ by choosing $b_{n}=\frac{1}{k}$, if $n=n_{k}$ for some $k \in \mathbb{Z}_{+}$, and $b_{n}=0$ otherwise. Then

$$
\sum_{n=1}^{\infty}\left|b_{n}\right|^{2}=\sum_{k=1}^{\infty}\left|b_{n_{k}}\right|^{2}=\sum_{k=1}^{\infty} \frac{1}{k^{2}}<\infty,
$$

and

$$
\sum_{n=1}^{\infty}\left|a_{n} b_{n}\right|=\sum_{k=1}^{\infty}\left|a_{n_{k}} b_{n_{k}}\right| \geqslant\left|a_{n_{1}}\right| \sum_{k=1}^{\infty} \frac{1}{k}=\infty .
$$

5. Let X be a normed space and Y a Banach space. Let $\left\langle\Lambda_{n}\right\rangle$ be a sequence of bounded linear maps $X \longrightarrow Y$ which are uniformly bounded, i.e. there exists a constant $M<\infty$ such that for all n we have $\left\|\Lambda_{n}\right\| \leqslant M$. Assume that there exists a dense set $E \subset X$ so that $\left\langle\Lambda_{n} x\right\rangle$ converges in Y for all $x \in E$. Prove that $\left\langle\Lambda_{n} x\right\rangle$ converges in Y for all $x \in X$.

Solution. Let $x \in X$ be arbitrary and let us be given some number $\varepsilon \in \mathbb{R}_{+}$. We choose an element y from the set E so that $\|x-y\|<\frac{\varepsilon}{3(M+1)}$. Since the sequence $\left\langle\Lambda_{n} y\right\rangle_{n=1}^{\infty}$ converges, we have $\left\|\Lambda_{n} y-\Lambda_{m} y\right\|<\frac{\varepsilon}{3}$ for sufficiently large positive integers m and n. Thus, for sufficiently large positive integers m and n,

$$
\begin{aligned}
\left\|\Lambda_{n} x-\Lambda_{m} x\right\| & \leqslant\left\|\Lambda_{n} x-\Lambda_{n} y\right\|+\left\|\Lambda_{n} y-\Lambda_{m} y\right\|+\left\|\Lambda_{m} y-\Lambda_{m} x\right\| \\
& \leqslant 2 M\|x-y\|+\left\|\Lambda_{n} y-\Lambda_{m} y\right\|<2 M \cdot \frac{\varepsilon}{3(M+1)}+\frac{\varepsilon}{3}<\varepsilon .
\end{aligned}
$$

This proves that $\left\langle\Lambda_{n} x\right\rangle_{n=1}^{\infty}$ is a fundamental sequence in Y for all x, and since Y is a Banach space, we are done.

Remark. The original problem text contained a misprint; it said that X was to be a Banach space and Y an arbitrary normed space. However, with these assumptions the claim does not hold. A simple counterexample is furnished by the case in which $X=\ell^{2}$,

$$
Y=c_{00}=\left\{\left\langle x_{n}\right\rangle_{n=1}^{\infty} \in \ell^{2} \mid \text { 斗 } N \in \mathbb{Z}_{+}: 0=x_{N}=x_{N+1}=x_{N+2}=\ldots\right\},
$$

the space Y is provided with the ℓ^{2}-norm, and for each $N \in \mathbb{Z}_{+}$,

$$
\Lambda_{N}=\left\langle x_{n}\right\rangle_{n=1}^{\infty} \longmapsto\left\langle x_{1}, x_{2}, \ldots, x_{N}, 0,0, \ldots\right\rangle: \ell^{2} \longrightarrow c_{00} .
$$

Then clearly the sequence $\left\langle\Lambda_{N} x\right\rangle_{N=1}^{\infty}$ becomes eventually stationary for each $x \in c_{00}$, and of course c_{00} is dense in ℓ^{2}. However, it is also clear that the sequence $\left\langle\Lambda_{N} x\right\rangle_{N=1}^{\infty}$ can not converge in c_{00} for any $x \in \ell^{2} \backslash c_{00}$.
6. Let $f \in \mathscr{C}(\mathbb{T})$. Prove that

$$
\lim _{N \longrightarrow \infty} \frac{S_{N} f(\vartheta)}{\log N}=0
$$

uniformly. On the other hand, assume that the complex sequence $\left\langle\lambda_{n}\right\rangle, n \in \mathbb{N}$, satisfies

$$
\lim _{n \longrightarrow \infty} \frac{\lambda_{n}}{\log n}=0
$$

Prove that there exists an $f \in \mathscr{C}(\mathbb{T})$ such that the sequence $\left\langle\frac{S_{N} f(0)}{\lambda_{N}}\right\rangle$ is unbounded.

Solution. Let us consider the operators $S_{N}=f \longmapsto S_{N} f: \mathscr{C}(\mathbb{T}) \longrightarrow \mathscr{C}(\mathbb{T})$, $N \in \mathbb{Z}_{+}$. It is clear that the norm of the operator Λ_{N} is at most $\frac{1}{2 \pi}$ times the \mathscr{L}^{1}-norm of the $N^{\text {th }}$ Dirichlet kernel D_{N}. By slightly altering the solution to the sixth exercise of the second problem set, we see that for sufficiently large $N \in \mathbb{Z}_{+}$, we have

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{N}\right| \mathrm{d} x=\frac{1}{\pi} \int_{0}^{\pi}\left|\frac{\sin \left(N+\frac{1}{2}\right) x}{\sin \frac{x}{2}}\right| \mathrm{d} x \\
\ll & \int_{0}^{\pi} \frac{\left|\sin \left(N+\frac{1}{2}\right) x\right| \mathrm{d} x}{x}=\int_{0}^{\pi\left(N+\frac{1}{2}\right)} \frac{|\sin y| \mathrm{d} y}{y} \leqslant \int_{0}^{\pi(N+1)} \frac{|\sin y| \mathrm{d} y}{y} \\
\leqslant & \int_{0}^{\pi} \frac{|\sin y| \mathrm{d} y}{y}+\sum_{n=1}^{N} \frac{1}{\pi n} \int_{\pi n}^{\pi(n+1)}|\sin y| \mathrm{d} y \ll 1+\sum_{n=1}^{N} \frac{1}{n} \ll \log N .
\end{aligned}
$$

The purpose of this little detour is to see that the sequence of operators $\left\langle\frac{S_{N}}{\log N}\right\rangle_{N=N_{0}}^{\infty}$ is uniformly bounded by some fixed number $M \in \mathbb{R}_{+}$for some $N_{0} \in \mathbb{Z}_{+}$. Let $f \in \mathscr{C}(\mathbb{T})$ be arbitrary, and let us be given some arbitrary $\varepsilon \in \mathbb{R}_{+}$. Since the subspace of trigonometric polynomials is dense in $\mathscr{C}(\mathbb{T})$, we may choose a trigonometric polynomial p so that $\|f-p\|<\frac{\varepsilon}{2 M}$. For sufficiently large $N \in \mathbb{Z}_{+}$, we also have

$$
\left\|\frac{S_{N} p}{\log N}\right\|<\frac{\varepsilon}{2}
$$

because the sequence $\left\langle S_{N} p\right\rangle_{N=1}^{\infty}$ is eventually stationary. But now for sufficiently large $N \in \mathbb{Z}_{+}$, we have

$$
\left\|\frac{S_{N} f}{\log N}\right\| \leqslant\left\|\frac{S_{N}(f-p)}{\log N}\right\|+\left\|\frac{S_{N} p}{\log N}\right\| \leqslant \frac{M}{\log N} \cdot \frac{\varepsilon}{2 M}+\frac{\varepsilon}{2}<\varepsilon
$$

We conclude that

$$
\lim _{N \longrightarrow \infty} \frac{S_{N} f}{\log N}=0
$$

in $\mathscr{C}(\mathbb{T})$ for every $f \in \mathscr{C}(\mathbb{T})$, as was to be proved.
For the second part of the exercise, we consider the sequence $\left\langle\Lambda_{N}\right\rangle_{N=1}^{\infty}$ of linear functionals defined as follows:

$$
\Lambda_{N}=f \longmapsto S_{N} f(0): \mathscr{C}(\mathbb{T}) \longrightarrow \mathbb{C} .
$$

It was proven in the lectures that

$$
\left\|\Lambda_{N}\right\| \gg \log N, \quad(N \longrightarrow \infty)
$$

and therefore

$$
\left\|\frac{\Lambda_{N}}{\lambda_{N}}\right\| \longrightarrow \infty . \quad(N \longrightarrow \infty)
$$

Thus the sequence of operators $\left\langle\frac{\Lambda_{N}}{\lambda_{N}}\right\rangle_{N=1}^{\infty}$ is not uniformly bounded and the Banach-Steinhaus theorem immediately guarantees the existence of a function $f \in \mathscr{C}(\mathbb{T})$ such that the sequence $\left\langle\frac{\Lambda_{N} f}{\lambda_{N}}\right\rangle_{N=1}^{\infty}$ is unbounded.

