INTRODUCTION TO FOURIER ANALYSIS
HOME ASSIGNMENT 4

1. Let f: [-m, 7] — R, f(9) = ‘19| Use Parseval’s formula to compute the
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Solution. In the fifth exercise of the first exercise set we proved that the
Fourier coefficients of f are given by the formulas
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for all n € Z. Parseval’s formula now says that
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we must have
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2. Let f be the 2m-periodic odd function defined on [0, 7| by f(9) = ¥ (7 — 9).

Prove that
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Solution. We first compute the square of the .#?-norm of the function f in
the interval [—7, 7]:
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We recall that in the fourth exercise of the first exercise set we proved for all
n € Z that the n'® Fourier coefficient of f vanishes if n is even and is equal
to —W% if n is odd. By Parseval’s formula, we have
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3. Show that for a not an integer, the Fourier series of
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Solution. This is just a straightforward computation: Let n € Z. Then the
b Fourier coefficient of the given function must be
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as required.

4. Assume that the complex sequence (a,) has the property that

Z|anbn| < 00

for all complex sequences (b,,) such that Z|bn|2 < 0. Prove that Z|an‘2 <00.

Solution. We shall prove the claim in contrapositive form. Let (a,) -, be

an arbitrary sequence of complex numbers such that » }an‘z = 00. We
first suppose that the sequence (a,) -, is bounded, i.e. that !an| M for all
n € Z, for some M € R,. Then we may find disjoint subsets E;, Es, ... of

Z such that
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for all k € Z,. We define a sequence (b,). -, of complex numbers by defining
for all n € Z, the number b, to be %an, if n € Ey, for some k € Z. . Otherwise
we let b, = 0. Then the sequence (b,) -, is in ¢* since
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Next we assume that the sequence (a,),_ , is unbounded. Let (a,,),;-, be
a subsequence of (a,) -, such that |ak1| < |ak2| < |ak3| < ... We define a



sequence of complex numbers (b,) -, by choosing b, = %, if n = ny for some
k € Z,, and b, = 0 otherwise. Then
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5. Let X be a normed space and Y a Banach space. Let (A,,) be a sequence
of bounded linear maps X — Y which are uniformly bounded, i.e. there
exists a constant M < oo such that for all n we have ||An|| < M. Assume
that there exists a dense set £ C X so that (A,x) converges in Y for all
x € E. Prove that (A, x) converges in Y for all x € X.

Solution. Let z € X be arbitrary and let us be given some number € € R, .
We choose an element y from the set E so that ||x — yH < m Since
the sequence (A,y) >, converges, we have HAny — AmyH < £ for sufficiently
large positive integers m and n. Thus, for sufficiently large positive integers

m and n,

1Anz = A ]| < [[Anz = Ay + [ Any — A + [ Ay — Anec|
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This proves that (A,z) -, is a fundamental sequence in Y for all z, and since
Y is a Banach space, we are done.

Remark. The original problem text contained a misprint; it said that X was
to be a Banach space and Y an arbitrary normed space. However, with these
assumptions the claim does not hold. A simple counterexample is furnished
by the case in which X = ¢2,

Y =copo = {(:L‘n>20:1 € (* ‘ AN €Z,:0=2xy = Tns1 = Tyyo = },
the space Y is provided with the /2-norm, and for each N € Z,
An = (n)oy — (21,29,...,25,0,0,...) 02— cyp.

Then clearly the sequence (Ayz)y_; becomes eventually stationary for each

x € cgp, and of course cyy is dense in 2. However, it is also clear that the

sequence (Ayz)%_, can not converge in coy for any x € €2\ ¢gp.



6. Let f € €(T). Prove that
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uniformly. On the other hand, assume that the complex sequence (\,), n € N,

satisfies \
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Prove that there exists an f € %(T) such that the sequence <Sff\—{v(0)> is

unbounded.

Solution. Let us consider the operators Sy = f —— Sy f: €(T ) — (T),
N € Z,. It is clear that the norm of the operator Ay is at most ;- times the
Z'-norm of the N*" Dirichlet kernel Dy. By slightly altering the solutlon to
the sixth exercise of the second problem set, we see that for sufficiently large
N € Z,, we have
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The purpose of this little detour is to see that the sequence of operators
<lngN ]OVOZ No is uniformly bounded by some fixed number M € R, for some
No € Z,. Let f € €(T) be arbitrary, and let us be given some arbitrary
e € R,. Since the subspace of trigonometric polynomials is dense in €' (T),
we may choose a trigonometric polynomial p so that H f—- pH < 57 For

sufficiently large N € Z,, we also have
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because the sequence (Syp)y_, is eventually stationary. But now for suf-
ficiently large N € Z,, we have

Snf < Sn(f—p)
logN|| = log N
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We conclude that

. Snf
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in ¢(T) for every f € €(T), as was to be proved.
For the second part of the exercise, we consider the sequence <A N>?:1 of
linear functionals defined as follows:

Ay = f+— Syf(0): ¥(T) — C.
It was proven in the lectures that

|An|| > log N, (N — o0)

Thus the sequence of operators <i\\_§>?\?z1 is not uniformly bounded and the
Banach—Steinhaus theorem immediately guarantees the existence of a func-
tion f € € (T) such that the sequence <A/\LNf>?Vo:1 is unbounded.
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