
Introduction to Fourier Analysis
Home assignment 3

1. Show that the Fejér kernel can be written as
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Solution. This only requires a direct computation, the details of which are
perhaps most easily revealed by working from the both ends of the proposed
identity. For any x ∈ R \ 2πZ, we have
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2. Prove that the series
∑∞

k=0 (−1)k (1 + k) is not Cesàro summable.

Solution. So, we need to consider the divergent series

1− 2 + 3− 4 + 5− 6 + 7− 8 + 9− 10 + 11− 12 + . . .

The sequence of partial sums of this series is easily seen to be

1, −1, 2, −2, 3, −3, 4, −4, 5, −5, 6, −6, . . .

Therefore the corresponding sequence of Cesàro means must be

1, 0,
2

3
, 0,

3

5
, 0,

4

7
, 0,

5

9
, 0,

6

11
, 0, . . .

Here the even terms vanish and the sequence of the odd terms converges to
1
2
. Hence the series under consideration is not Cesàro summable.



3. Prove that if the series
∑
cn of complex numbers is Cesàro summable, and

the sum is σ, then
∑
cn is Abel summable to σ.

Solution. We are provided with a Cesàro summable series of complex num-
bers

∑∞
n=1 cn having the Cesàro sum σ. Let 〈sn〉∞n=1 be the sequence of partial

sums of the series under consideration, and let 〈σn〉∞n=1 be the corresponding
sequence of Cesàro means. Let us assume first that σ = 0, and suppose that
we have been provided with an arbitrarily small ε ∈ R+. Then there must
exist a fixed positive integer Nε such that

∣∣σn

∣∣ < ε for all integers n greater
than Nε.

We begin by taking a look at the series
∑∞

n=1 nσnr
n for some fixed value

of r ∈ [0, 1[. This series is always absolutely convergent, since
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+
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where the constant Cε is, of course, just the sum with Nε terms.
Two summations by parts say that for any sufficiently large N ∈ Z+ and

any r ∈ [0, 1[, we have
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Letting here N −→∞ gives
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n = (1− r)2

∞∑
n=1

nσnr
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and consequently∣∣∣∣∣
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and here the right-hand side can be pushed as near to ε as one wishes to
simply by taking values of r to be sufficiently close to 1. That is, the series∑∞

n=1 cn is Abel summable to zero.



We still need to consider the general case σ ∈ C. In this case the series
−σ + c1 + c2 + . . . must be Cesàro summable to zero since its N th Cesàro
mean is

−σ +
1

N

N−1∑
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sn = −σ +
N − 1

N
σN−1,

for arbitrary N ∈ Z+ and the last expression tends to zero as N −→ ∞.
Hence the Abel series−σr+
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thereby implying that the series
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n=1 cnr
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4. Under certain conditions one can reverse the summability results, i.e. from
Abel or Cesàro summability deduce the summability of the original series.
These kinds of theorems are known as Tauberian theorems. As an example,
assume that the sequence 〈cn〉 of complex numbers satisfies ncn −→ 0 as
n −→∞, and that it is Cesàro summable to σ. Prove that

∑
cn = σ.

Solution. Let 〈sn〉∞n=1 be the sequence of partial sums of the Cesàro sum-
mable series

∑∞
n=1 cn, and let 〈σn〉∞n=1 be the corresponding sequence of Cesà-

ro means. We know that ncn −→ 0 and σn −→ σ as n −→ ∞ and we are
supposed to prove that sn −→ σ as n −→∞.

We may write the partial sum sN in the form
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The first term of the right-most sum converges to σ as N −→∞ by assump-
tion, and therefore we only need to show that the last sum tends to zero as
N −→∞.

Let us be given an arbitrarily small ε ∈ R+, and let N0 ∈ Z+ be such
that ∣∣ncn∣∣ < ε

2
,

for all integers n greater than N0. Now, for sufficiently large N ∈ Z+, we
must have ∣∣∣∣∣ 1
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5. Again, assume that the sequence 〈cn〉 of complex numbers satisfies ncn → 0
as n −→∞, but now that it is Abel summable to σ. Prove that

∑
cn = σ.

Solution. Let us be given some arbitrarily small ε ∈ R+. For any N ∈ Z+,
denote rN = 1 − 1

N
. Then clearly rN −→ 1− as N −→ ∞, and so we may

choose N to be so large that∣∣∣∣∣
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Since ncn −→ 0 as n −→ ∞, there exists a positive integer N0 such that∣∣ncn∣∣ < ε
6
for all integers n > N0. Then we have∣∣∣∣∣
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provided that N is sufficiently large. For N > N0, we can also estimate∣∣∣∣∣
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Combining all the above assumptions we conclude that for all sufficient large
positive integers N , we have∣∣∣∣∣
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6. Let Pr(ϑ) be the Poisson kernel in the unit disk D. Let

u(r, ϑ) =
∂Pr(ϑ)

∂ϑ
, 0 6 r < 1,

∣∣ϑ∣∣ 6 π.

Prove that u is harmonic in D and that for all ϑ

lim
r−→1−

u(r, ϑ) = 0.

However, u is not identically zero. Why is this not in contradiction with the
results given in the lectures?

Solution. The harmonicity of u in D is rather obvious, for the function Pr(ϑ)
(considered as a function defined in D via the polar coordinates) is a smooth
harmonic function in D and so

4u = 4∂Pr

∂ϑ
=

∂

∂ϑ
4Pr ≡ 0.

One way to see the harmonicity of the Poisson kernel is to observe that it is
the real part of the function z 7−→ 1+z

1−z
: D −→ C which is analytic in D.

It is easy to get an explicit expression for u in D:

u(r, ϑ) =
∂Pr

∂ϑ
=

∂

∂ϑ

1− r2

1− 2r cosϑ+ r2
=

2r (1− r2) sinϑ

(1− 2r cosϑ+ r2)2 .

When cosϑ 6= 1, we have
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2 · 0 · sinϑ
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and when cosϑ = 1, we have quite simply sinϑ = 0 and

u(r, ϑ) = 0 −−−−−−−→
r−→1−

0.

The reason with the apparent contradiction with the uniqueness result of the
lectures is in the observation that we do not have

lim
r−→1−

u(r, ϑ) = 0

uniformly in ϑ. One way to see this is to consider the value of u along the
curve on which cosϑ = r and sinϑ =

√
1− r2. On this curve we have

u(r, ϑ) =
2r (1− r2)

√
1− r2

(1− 2r · r + r2)2 =
2r√

1− r2
−−−−−−−→

r−→1−
∞.


