Introduction to Fourier Analysis Home assignment 3

1. Show that the Fejér kernel can be written as

$$
F_{N}(x)=\frac{1}{N} \cdot \frac{\sin ^{2} \frac{N x}{2}}{\sin ^{2} \frac{x}{2}}
$$

Solution. This only requires a direct computation, the details of which are perhaps most easily revealed by working from the both ends of the proposed identity. For any $x \in \mathbb{R} \backslash 2 \pi \mathbb{Z}$, we have

$$
\begin{aligned}
F_{N}(x) & =\frac{1}{N} \sum_{k=0}^{N-1} D_{k}(x)=\frac{1}{N} \sum_{k=0}^{N-1} \frac{\sin \left(k+\frac{1}{2}\right) x}{\sin \frac{x}{2}} \\
& =\frac{1}{N \sin \frac{x}{2}} \sum_{k=0}^{N-1} \frac{e^{i\left(k+\frac{1}{2}\right) x}-e^{-i\left(k+\frac{1}{2}\right) x}}{2 i} \\
& =\frac{1}{N \sin \frac{x}{2}} \cdot \frac{e^{i \frac{x}{2}} \cdot \frac{e^{i N x}-1}{e^{i x}-1}-e^{-i \frac{x}{2}} \cdot \frac{e^{-i N x-1}}{e^{-i x}-1}}{2 i} \\
& =\frac{1}{N \sin \frac{x}{2}} \cdot \frac{e^{i N x}-1+e^{-i N x}-1}{2 i\left(e^{i \frac{x}{2}}-e^{-i \frac{x}{2}}\right)}=\frac{1}{N \sin \frac{x}{2}} \cdot \frac{e^{i N x}-2+e^{-i N x}}{2 i\left(e^{i \frac{x}{2}}-e^{-i \frac{x}{2}}\right)} \\
& =\frac{1}{N \sin \frac{x}{2}} \cdot \frac{\left(e^{i \frac{N x}{2}}-e^{-i \frac{N x}{2}}\right)^{2}}{2 i\left(e^{i \frac{x}{2}}-e^{-i \frac{x}{2}}\right)}=\frac{1}{N} \cdot \frac{\sin ^{2} \frac{N x}{2}}{\sin ^{2} \frac{x}{2}}
\end{aligned}
$$

2. Prove that the series $\sum_{k=0}^{\infty}(-1)^{k}(1+k)$ is not Cesàro summable.

Solution. So, we need to consider the divergent series

$$
1-2+3-4+5-6+7-8+9-10+11-12+\ldots
$$

The sequence of partial sums of this series is easily seen to be

$$
1, \quad-1, \quad 2, \quad-2, \quad 3, \quad-3, \quad 4, \quad-4, \quad 5, \quad-5, \quad 6, \quad-6, \quad \ldots
$$

Therefore the corresponding sequence of Cesàro means must be

$$
1, \quad 0, \quad \frac{2}{3}, \quad 0, \quad \frac{3}{5}, \quad 0, \quad \frac{4}{7}, \quad 0, \quad \frac{5}{9}, \quad 0, \quad \frac{6}{11}, \quad 0, \ldots
$$

Here the even terms vanish and the sequence of the odd terms converges to $\frac{1}{2}$. Hence the series under consideration is not Cesàro summable.
3. Prove that if the series $\sum c_{n}$ of complex numbers is Cesàro summable, and the sum is σ, then $\sum c_{n}$ is Abel summable to σ.

Solution. We are provided with a Cesàro summable series of complex numbers $\sum_{n=1}^{\infty} c_{n}$ having the Cesàro sum σ. Let $\left\langle s_{n}\right\rangle_{n=1}^{\infty}$ be the sequence of partial sums of the series under consideration, and let $\left\langle\sigma_{n}\right\rangle_{n=1}^{\infty}$ be the corresponding sequence of Cesàro means. Let us assume first that $\sigma=0$, and suppose that we have been provided with an arbitrarily small $\varepsilon \in \mathbb{R}_{+}$. Then there must exist a fixed positive integer N_{ε} such that $\left|\sigma_{n}\right|<\varepsilon$ for all integers n greater than N_{ε}.

We begin by taking a look at the series $\sum_{n=1}^{\infty} n \sigma_{n} r^{n}$ for some fixed value of $r \in[0,1[$. This series is always absolutely convergent, since

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|n \sigma_{n} r^{n}\right| \leqslant \sum_{n=1}^{N_{\varepsilon}}\left|n \sigma_{n} r^{n}\right|+\sum_{n=N_{\varepsilon}+1}^{\infty} n\left|\sigma_{n}\right| r^{n} \leqslant C_{\varepsilon}+\varepsilon \sum_{n=N_{\varepsilon}+1}^{\infty} n r^{n} \\
& \quad=C_{\varepsilon}+\varepsilon \cdot \frac{\left(N_{\varepsilon}+1\right) r^{N_{\varepsilon}+1}}{1-r}+\frac{\varepsilon r^{N_{\varepsilon}+2}}{(1-r)^{2}} \leqslant C_{\varepsilon}+\frac{\varepsilon\left(N_{\varepsilon}+1\right)}{1-r}+\frac{\varepsilon}{(1-r)^{2}},
\end{aligned}
$$

where the constant C_{ε} is, of course, just the sum with N_{ε} terms.
Two summations by parts say that for any sufficiently large $N \in \mathbb{Z}_{+}$and any $r \in[0,1[$, we have

$$
\begin{aligned}
& \sum_{n=1}^{N} c_{n} r^{n}=s_{N} r^{N}-\sum_{n=1}^{N-1}\left(r^{n+1}-r^{n}\right) s_{n} \\
& \quad=s_{N} r^{N}-(N-1) \sigma_{N-1}\left(r^{N+1}-r^{N}\right)+\sum_{n=1}^{N-2} n \sigma_{n}\left(r^{n+2}-2 r^{n+1}+r^{n}\right) .
\end{aligned}
$$

Letting here $N \longrightarrow \infty$ gives

$$
\sum_{n=1}^{\infty} c_{n} r^{n}=(1-r)^{2} \sum_{n=1}^{\infty} n \sigma_{n} r^{n}
$$

and consequently

$$
\left|\sum_{n=1}^{\infty} c_{n} r^{n}\right| \leqslant C_{\varepsilon}(1-r)^{2}+\varepsilon\left(N_{\varepsilon}+1\right)(1-r)+\varepsilon
$$

and here the right-hand side can be pushed as near to ε as one wishes to simply by taking values of r to be sufficiently close to 1 . That is, the series $\sum_{n=1}^{\infty} c_{n}$ is Abel summable to zero.

We still need to consider the general case $\sigma \in \mathbb{C}$. In this case the series $-\sigma+c_{1}+c_{2}+\ldots$ must be Cesàro summable to zero since its $N^{\text {th }}$ Cesàro mean is

$$
-\sigma+\frac{1}{N} \sum_{n=1}^{N-1} s_{n}=-\sigma+\frac{N-1}{N} \sigma_{N-1},
$$

for arbitrary $N \in \mathbb{Z}_{+}$and the last expression tends to zero as $N \longrightarrow \infty$. Hence the Abel series $-\sigma r+\sum_{n=1}^{\infty} c_{n} r^{n+1}$ converges absolutely for all $r \in[0,1[$ and

$$
-\sigma r+\sum_{n=1}^{\infty} c_{n} r^{n+1} \xrightarrow[r \longrightarrow 1-]{ } 0,
$$

thereby implying that the series $\sum_{n=1}^{\infty} c_{n} r^{n}$ also converges absolutely for all $r \in[0,1[$, and

$$
\sum_{n=1}^{\infty} c_{n} r^{n} \xrightarrow[r \longrightarrow 1-]{ } \sigma
$$

4. Under certain conditions one can reverse the summability results, i.e. from Abel or Cesàro summability deduce the summability of the original series. These kinds of theorems are known as Tauberian theorems. As an example, assume that the sequence $\left\langle c_{n}\right\rangle$ of complex numbers satisfies $n c_{n} \longrightarrow 0$ as $n \longrightarrow \infty$, and that it is Cesàro summable to σ. Prove that $\sum c_{n}=\sigma$.

Solution. Let $\left\langle s_{n}\right\rangle_{n=1}^{\infty}$ be the sequence of partial sums of the Cesàro summable series $\sum_{n=1}^{\infty} c_{n}$, and let $\left\langle\sigma_{n}\right\rangle_{n=1}^{\infty}$ be the corresponding sequence of Cesàro means. We know that $n c_{n} \longrightarrow 0$ and $\sigma_{n} \longrightarrow \sigma$ as $n \longrightarrow \infty$ and we are supposed to prove that $s_{n} \longrightarrow \sigma$ as $n \longrightarrow \infty$.

We may write the partial sum s_{N} in the form

$$
\sum_{n=1}^{N} c_{n}=\frac{1}{N-1} \sum_{n=1}^{N-1}(N-n) c_{n}+\frac{1}{N-1} \sum_{n=1}^{N-1} n c_{n+1}=\sigma_{N-1}+\frac{1}{N-1} \sum_{n=1}^{N-1} n c_{n+1} .
$$

The first term of the right-most sum converges to σ as $N \longrightarrow \infty$ by assumption, and therefore we only need to show that the last sum tends to zero as $N \longrightarrow \infty$.

Let us be given an arbitrarily small $\varepsilon \in \mathbb{R}_{+}$, and let $N_{0} \in \mathbb{Z}_{+}$be such that

$$
\left|n c_{n}\right|<\frac{\varepsilon}{2},
$$

for all integers n greater than N_{0}. Now, for sufficiently large $N \in \mathbb{Z}_{+}$, we must have

$$
\left|\frac{1}{N-1} \sum_{n=1}^{N_{0}} n c_{n+1}\right|<\frac{\varepsilon}{2}
$$

and consequently

$$
\begin{aligned}
\left|\frac{1}{N-1} \sum_{n=1}^{N-1} n c_{n+1}\right| \leqslant\left|\frac{1}{N-1} \sum_{n=1}^{N_{0}} n c_{n+1}\right|+ & \frac{1}{N-1} \sum_{n=N_{0}+1}^{N-1}\left|n c_{n+1}\right| \\
& <\frac{\varepsilon}{2}+\frac{N-N_{0}}{N-1} \cdot \frac{\varepsilon}{2} \leqslant \varepsilon .
\end{aligned}
$$

5. Again, assume that the sequence $\left\langle c_{n}\right\rangle$ of complex numbers satisfies $n c_{n} \rightarrow 0$ as $n \longrightarrow \infty$, but now that it is Abel summable to σ. Prove that $\sum c_{n}=\sigma$.

Solution. Let us be given some arbitrarily small $\varepsilon \in \mathbb{R}_{+}$. For any $N \in \mathbb{Z}_{+}$, denote $r_{N}=1-\frac{1}{N}$. Then clearly $r_{N} \longrightarrow 1-$ as $N \longrightarrow \infty$, and so we may choose N to be so large that

$$
\left|\sum_{n=1}^{\infty} c_{n} r_{N}^{n}-\sigma\right|<\frac{\varepsilon}{3}
$$

Since $n c_{n} \longrightarrow 0$ as $n \longrightarrow \infty$, there exists a positive integer N_{0} such that $\left|n c_{n}\right|<\frac{\varepsilon}{6}$ for all integers $n>N_{0}$. Then we have

$$
\begin{aligned}
& \quad\left|\sum_{n=1}^{N} c_{n}\left(1-r_{N}^{n}\right)\right|=\left(1-r_{N}\right)\left|\sum_{n=1}^{N} c_{n}\left(1+r_{N}+r_{N}^{2}+\ldots+r_{N}^{n-1}\right)\right| \\
& \leqslant\left(1-r_{N}\right) \sum_{n=1}^{N}\left|c_{n}\right| \cdot n=\frac{1}{N} \sum_{n=1}^{N_{0}}\left|n c_{n}\right|+\frac{1}{N} \sum_{n=N_{0}+1}^{N}\left|n c_{n}\right|<\frac{\varepsilon}{6}+\frac{\varepsilon}{6}<\frac{\varepsilon}{3},
\end{aligned}
$$

provided that N is sufficiently large. For $N>N_{0}$, we can also estimate

$$
\left|\sum_{n=N+1}^{\infty} c_{n} r_{N}^{n}\right| \leqslant \frac{\varepsilon}{3 N} \sum_{n=N+1}^{\infty} r_{N}^{n}=\frac{\varepsilon}{3 N} \cdot \frac{r_{N}^{N+1}}{1-r_{N}}=\frac{\varepsilon}{3 N} \cdot \frac{r_{N}^{N+1}}{1-1+\frac{1}{N}}<\frac{\varepsilon}{3}
$$

Combining all the above assumptions we conclude that for all sufficient large positive integers N, we have

$$
\begin{aligned}
& \left|\sum_{n=1}^{N} c_{n}-\sigma\right| \leqslant\left|\sum_{n=1}^{N} c_{n}-\sum_{n=1}^{\infty} c_{n} r_{N}^{n}\right|+\left|\sum_{n=1}^{\infty} c_{n} r_{N}^{n}-\sigma\right| \\
\leqslant & \left|\sum_{n=1}^{N} c_{n}\left(1-r_{N}^{n}\right)\right|+\left|\sum_{n=N+1}^{\infty} c_{n} r_{N}^{n}\right|+\left|\sum_{n=1}^{\infty} c_{n} r_{N}^{n}-\sigma\right|<\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

6. Let $P_{r}(\vartheta)$ be the Poisson kernel in the unit disk \mathbb{D}. Let

$$
u(r, \vartheta)=\frac{\partial P_{r}(\vartheta)}{\partial \vartheta}, \quad 0 \leqslant r<1, \quad|\vartheta| \leqslant \pi .
$$

Prove that u is harmonic in \mathbb{D} and that for all ϑ

$$
\lim _{r \longrightarrow 1-} u(r, \vartheta)=0 .
$$

However, u is not identically zero. Why is this not in contradiction with the results given in the lectures?

Solution. The harmonicity of u in \mathbb{D} is rather obvious, for the function $P_{r}(\vartheta)$ (considered as a function defined in \mathbb{D} via the polar coordinates) is a smooth harmonic function in \mathbb{D} and so

$$
\Delta u=\triangle \frac{\partial P_{r}}{\partial \vartheta}=\frac{\partial}{\partial \vartheta} \triangle P_{r} \equiv 0 .
$$

One way to see the harmonicity of the Poisson kernel is to observe that it is the real part of the function $z \longmapsto \frac{1+z}{1-z}: \mathbb{D} \longrightarrow \mathbb{C}$ which is analytic in \mathbb{D}.

It is easy to get an explicit expression for u in \mathbb{D} :

$$
u(r, \vartheta)=\frac{\partial P_{r}}{\partial \vartheta}=\frac{\partial}{\partial \vartheta} \frac{1-r^{2}}{1-2 r \cos \vartheta+r^{2}}=\frac{2 r\left(1-r^{2}\right) \sin \vartheta}{\left(1-2 r \cos \vartheta+r^{2}\right)^{2}} .
$$

When $\cos \vartheta \neq 1$, we have

$$
u(r, \vartheta)=\frac{2 r\left(1-r^{2}\right) \sin \vartheta}{\left(1-2 r \cos \vartheta+r^{2}\right)^{2}} \xrightarrow[r \longrightarrow 1-]{ } \frac{2 \cdot 0 \cdot \sin \vartheta}{(1-2 \cos \vartheta+1)^{2}}=0,
$$

and when $\cos \vartheta=1$, we have quite $\operatorname{simply} \sin \vartheta=0$ and

$$
u(r, \vartheta)=0 \xrightarrow[r \longrightarrow 1-]{ } 0
$$

The reason with the apparent contradiction with the uniqueness result of the lectures is in the observation that we do not have

$$
\lim _{r \longrightarrow 1-} u(r, \vartheta)=0
$$

uniformly in ϑ. One way to see this is to consider the value of u along the curve on which $\cos \vartheta=r$ and $\sin \vartheta=\sqrt{1-r^{2}}$. On this curve we have

$$
u(r, \vartheta)=\frac{2 r\left(1-r^{2}\right) \sqrt{1-r^{2}}}{\left(1-2 r \cdot r+r^{2}\right)^{2}}=\frac{2 r}{\sqrt{1-r^{2}}} \xrightarrow[r \longrightarrow 1-]{ } \infty
$$

