
Introduction to Fourier Analysis
Home assignment 2

1. Assume that 〈an〉Nn=1 and 〈bn〉Nn=1 are two finite sequences of complex
numbers. Let Bk =

∑k
n=1 bn denote the kth partial sum of the series

∑
bn,

and let B0 = 0. Prove the summation by parts formula

N∑
n=M

anbn = aNBN − aMBM−1 −
N−1∑
n=M

(an+1 − an)Bn.

Solution. It is a straightforward approach to start with the left-hand side
and expand the multiplicand bn in terms of the partial sums Bn. This way
we get

N∑
n=M

anbn =
N∑

n=M

an (Bn −Bn−1) =
N∑

n=M

anBn −
N∑

n=M

anBn−1

= aNBN +
N−1∑
n=M

anBn − aMBM−1 −
N−1∑
n=M

an+1Bn

= aNBN − aMBM−1 −
N−1∑
n=M

(an+1 − an)Bn.

2. Using the previous exercise prove Dirichlet’s test for convergence of a
series: if the partial sums of the series

∑∞
n=1 bn are bounded, and if 〈an〉

is a sequence of real numbers tending monotonically to 0, then the series∑∞
n=1 anbn converges.

Solution. Let 〈Bn〉∞n=1 be the sequence of the partial sums of the series∑∞
n=1 bn, let C ∈ R+ be a constant such that

∣∣Bn

∣∣ < C for every n ∈ Z+,
and suppose that an arbitrarily small positive real number ε is given. Let M
and N be positive integers with N > M and so large that a` < ε

3C
for all

integers ` > M . Then a simple summation by parts gives the estimate∣∣∣∣∣
N∑

n=M

anbn

∣∣∣∣∣ =

∣∣∣∣∣aNBN − aMBM−1 −
N−1∑
n=M

(an+1 − an)Bn

∣∣∣∣∣
6
∣∣aN ∣∣ · C +

∣∣aM ∣∣ · C + C

N−1∑
n=M

∣∣an+1 − an
∣∣



6
ε

3C
· C +

ε

3C
· C + C

∣∣∣∣∣
N−1∑
n=M

(an+1 − an)

∣∣∣∣∣
=

2ε

3
+ C |aN − aM | 6

2ε

3
+ C

∣∣aM ∣∣ < ε,

thereby proving that the sequence of partial sums of the series
∑∞

n=1 anbn is
a fundamental sequence.

3. Let f be the 2π-periodic saw tooth function defined for
∣∣x∣∣ < π by

f(x) =

{
−π+x

2
, −π < x < 0,

π−x
2
, 0 < x < π.

Sketch the graph of f and show that

f(x) ∼ 1

2i

∑
n 6=0

einx

n
.

Solution. Since the function f is odd, we have f̂(0) = 0 and, for non-zero
integers n,

f̂(n) =
1

2π

π∫
−π

f(x) e−inxdx = − i
π

π∫
0

(
π − x

2

)
sinnxdx

=
i

2π

(π − x) cosnx

n

]x=π
0

+
1

n

π∫
0

cosnxdx


=

i

2π

(
−π
n

+
1

n
· sinnx

n

]x=π
0

)
= − i

2n
=

1

2ni
,

as required.
The graph of the function f :

4. Show using the Dirichlet test that the Fourier series in the previous exercise
converges at every point. What can you say about the sum of the series at
the origin in terms of values of f?



Solution. At zero the convergence is obvious, since the symmetric partial
sums of the Fourier series of f vanish and therefore the series converges to
zero at the origin. This value is the arithmetic mean of the one-sided limits
±π

2
which the function f has at the origin.
For fixed x ∈ R \

{
0
}
and all N ∈ Z+, we have∣∣∣∣∣

N∑
n=1

(
einx − e−inx

)∣∣∣∣∣ 6 2

∣∣∣∣∣
N∑
n=1

einx

∣∣∣∣∣ = 2

∣∣∣∣eiNx − 1

eix − 1

∣∣∣∣ 6 4

|eix − 1|
,

so that the partial sums of the series
∑∞

n=1 (einx − e−inx) are bounded. Since
1
n
−→ 0 as n −→∞, the Dirichlet test implies that the series

∞∑
n=1

1

n

(
einx − e−inx

)
converges, and the partial sums of this series are precisely the symmetric
partial sums of the Fourier series of f at x.

5. Prove that if the series
∑
cn of complex numbers converges and the sum

is s, then
∑
cn is Cesàro-summable to s.

Solution. Let 〈sn〉∞n=1 be the sequence of partial sums of the series
∑∞

n=1 cn,
and let σN = 1

N

∑N
n=1 sn for each N ∈ Z+. We know that sn −−−−−→n −→∞ s and

we have to prove that σn −−−−−→n −→∞ s as well.
Let us first suppose that s = 0, and suppose that ε is some given arbitra-

rily small positive real number. Let N0 ∈ Z+ be so large that
∣∣sn∣∣ < ε

2
for all

integers n > N0, and let the number N be an integer greater than N0 and so
large that 1

N

∣∣∣∑N0

n=1 sn

∣∣∣ < ε
2
. Then

∣∣σN ∣∣ =

∣∣∣∣∣
∑N

n=1 sn
N

∣∣∣∣∣ 6
∣∣∣∣∣
∑N0

n=1 sn
N

∣∣∣∣∣+
∑N

n=N0+1

∣∣sn∣∣
N

6
ε

2
+
N −N0

N
· ε
2
< ε,

and thus σN −−−−−→N −→∞ 0.
Let us next tackle the general case s ∈ C. Consider the series

−s+ c1 + c2 + c3 + . . . .

These series converges to zero, and so it is Cesàro-summable to zero as well.
This means that

−s+
∑N

n=1 (−s+ sn)

N + 1
−−−−−−−→

N−→∞
0,



so that
N

N + 1
·
∑N

n=1 sn
N

−−−−−−−→
N−→∞

s.

Let ε be an arbitrarily small positive real number, and let the integer N be
so large that ∣∣∣∣ σN

N + 1

∣∣∣∣ < ε

2
and

∣∣∣∣ NσNN + 1
− s
∣∣∣∣ < ε

2

The first condition can be assumed since the limit N
N+1

σN −→ s readily
implies that the sequence 〈σN〉∞N=1 is bounded. Now∣∣σN − s∣∣ 6 ∣∣∣∣σN − NσN

N + 1

∣∣∣∣+ ∣∣∣∣ NσNN + 1
− s
∣∣∣∣ < ε

2
+
ε

2
= ε,

so that σN −−−−−→N −→∞
s.

6. Let

LN =
1

2π

π∫
−π

∣∣DN(x)
∣∣dx,

where DN is the Dirichlet kernel. Show that for all positive N ,

LN > c logN,

for some positive constant c. Hence 〈DN〉 is not a family of good kernels.

Solution. The Dirichlet kernel DN satisfies the equality

DN(x) =
sin
(
N + 1

2

)
x

sin x
2

for all x ∈ R \
{
0
}
and each N ∈ Z+. Therefore

LN =
1

2π

π∫
−π

∣∣DN(x)
∣∣dx =

1

π

π∫
0

∣∣∣∣∣sin
(
N + 1

2

)
x

sin x
2

∣∣∣∣∣ dx
�

π∫
0

∣∣sin (N + 1
2

)
x
∣∣ dx

x
=

π(N+ 1
2)∫

0

|sin y| dy
y

>

πN∫
0

|sin y| dy
y

>
N∑
n=1

1

πn

πn∫
π(n−1)

∣∣sin y∣∣dy � N∑
n=1

1

n
� logN,

where “�” means “> c” for some fixed positive real constant c.


