Introduction to Fourier-analysis

Home assignment 9

1. Let

$$
u(\phi)=\int_{-1}^{1} \phi(x, x) d x, \quad \phi \in \mathcal{S}\left(\mathbb{R}^{2}\right)
$$

Show that $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{2}\right)$ and compute its first order derivatives. What is $\left(\partial_{1}+\partial_{2}\right) u$?
2. Prove that

$$
\sum_{n=-\infty}^{\infty} \frac{1}{(n+a)^{2}}=\frac{\pi^{2}}{\sin ^{2}(\pi a)}
$$

when a is real and not equal to an integer. Hint: Apply Poissonsummation formula to

$$
g(x)=\left\{\begin{array}{l}
1-|x|,|x| \leq 1 \\
0, \text { otherwise }
\end{array}\right.
$$

3. This exercise collects the basic properties of the gamma function.
(a) The gamma function $\Gamma(s)$ is defined by

$$
\Gamma(s)=\int_{0}^{\infty} e^{-x} x^{s-1}, \quad s>0
$$

Prove that this is well defined, i.e. the integral exists as an improper integral.
(b) Prove that $\Gamma(s+1)=s \Gamma(s), s>0$. Conclude that for every positive integer n we have $\Gamma(n+1)=n$!.
(c) Show that

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}, \quad \Gamma\left(\frac{3}{2}\right)=\frac{\sqrt{\pi}}{2} .
$$

4. Define the zeta-function by

$$
\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, s>1 .
$$

Prove that

$$
\pi^{-s / 2} \Gamma(s / 2) \zeta(s)=\frac{1}{2} \int_{0}^{\infty} t^{s / 2-1}(\vartheta(t)-1) d t
$$

where the theta-function is defined by

$$
\vartheta(s)=\sum_{n=-\infty}^{\infty} e^{-\pi n^{2} s} .
$$

5. Let's return to the X-ray transform. For each $(t, \theta) \in \mathbb{R} \times[-\pi, \pi]$ let $L_{t, \theta}$ be the line in the (x, y)-plane defined by

$$
x \cos \theta+y \sin \theta=t .
$$

Define the X-ray transform for $f \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ by

$$
X(f)(t, \theta)=\int_{L_{t, \theta}} f=\int_{-\infty}^{\infty} f(t \cos \theta+u \sin \theta, t \sin \theta-u \cos \theta) d u
$$

Compute $X(g)$, when

$$
g(x, y)=e^{-\pi\left(x^{2}+y^{2}\right)} .
$$

6. Let again X denote the X-ray transform. Show that $f \in \mathcal{S}\left(\mathbb{R}^{2}\right)$ and $X(f)=0$ implies $f=0$.
