Introduction to Fourier-analysis

Home assignment 8

1. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear transformation, and $f \in L^{1}\left(\mathbb{R}^{n}\right)$. Define $g(x)=f(A x), x \in \mathbb{R}^{n}$. Prove that if A is invertible, then $g \in L^{1}\left(\mathbb{R}^{n}\right)$. Also, compute \hat{g}.
2. Give an example of a function $f \in L^{2}$ such that $f \notin L^{1}$ but $\hat{f} \in L^{1}$.
3. Let for $0<r<\infty$,

$$
g_{r}(x)=e^{-r|x|^{2}}, x \in \mathbb{R}^{n} .
$$

Compute the convolution $g_{r_{1}} * g_{r_{2}}$.
4. Let A be a positive definite symmetric $n \times n$ matrix with real coefficients. Compute the Fourier-transform of $f(x)=e^{-\langle A x, x\rangle}, x \in \mathbb{R}^{n}$.
5. Let $f \in L^{1}(\mathbb{R})$, and assume that \hat{f} is continuous and satisfies

$$
\hat{f}(\xi)=O\left(|\xi|^{-1-\alpha}\right)
$$

as $|\xi| \rightarrow \infty$ for some $0<\alpha<1$. Prove that f is Hölder continuous of order α, i.e. there exists a constant M such that

$$
|f(x+h)-f(x)| \leq M h^{\alpha}
$$

for all $x, h \in \mathbb{R}$.
Hint: Use the Fourier-inversion formula to express $f(x+h)-f(x)$ as an integral involving \hat{f}, and estimate this integral separately over the sets $|\xi| \leq 1 /|h|$ and $|\xi| \geq 1 /|h|$.
6. Consider the linear partial differential operator $P(x, \partial)$ given by

$$
P(x, \partial) u(x)=\sum_{[\alpha \mid \leq m} a_{\alpha}(x) \partial^{\alpha} u(x),
$$

where the C^{∞}-coefficients a_{α} and all their derivatives are uniformly bounded on \mathbb{R}^{n}. Prove that $P(x, \partial)$ maps the Schwarz-space $\mathcal{S}\left(\mathbb{R}^{n}\right)$ to itself continuously.

