Introduction to Fourier–analysis

Home assignment 8

- 1. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation, and $f \in L^1(\mathbb{R}^n)$. Define $g(x) = f(Ax), x \in \mathbb{R}^n$. Prove that if A is invertible, then $g \in L^1(\mathbb{R}^n)$. Also, compute \hat{g} .
- 2. Give an example of a function $f \in L^2$ such that $f \notin L^1$ but $\hat{f} \in L^1$.
- 3. Let for $0 < r < \infty$,

$$g_r(x) = e^{-r|x|^2}, x \in \mathbb{R}^n.$$

Compute the convolution $g_{r_1} * g_{r_2}$.

- 4. Let A be a positive definite symmetric $n \times n$ matrix with real coefficients. Compute the Fourier-transform of $f(x) = e^{-\langle Ax, x \rangle}, x \in \mathbb{R}^n$.
- 5. Let $f \in L^1(\mathbb{R})$, and assume that \hat{f} is continuous and satisfies

$$\hat{f}(\xi) = O(|\xi|^{-1-\alpha})$$

as $|\xi| \to \infty$ for some $0 < \alpha < 1$. Prove that f is Hölder continuous of order α , i.e. there exists a constant M such that

$$|f(x+h) - f(x)| \le Mh^{\alpha}$$

for all $x, h \in \mathbb{R}$.

Hint: Use the Fourier–inversion formula to express f(x+h) - f(x) as an integral involving \hat{f} , and estimate this integral separately over the sets $|\xi| \leq 1/|h|$ and $|\xi| \geq 1/|h|$.

6. Consider the linear partial differential operator $P(x, \partial)$ given by

$$P(x,\partial) u(x) = \sum_{[\alpha| \le m} a_{\alpha}(x) \,\partial^{\alpha} u(x),$$

where the C^{∞} -coefficients a_{α} and all their derivatives are uniformly bounded on \mathbb{R}^n . Prove that $P(x, \partial)$ maps the Schwarz-space $\mathcal{S}(\mathbb{R}^n)$ to itself continuously.