Introduction to Fourier-analysis

Home assignment 7

Note that this time there are only five problems.

1. Let $\phi(x)=|x|, \quad x \in[-1,1]$. Extend it to \mathbb{R} as a periodic function of period 2. Prove that

$$
f(x)=\sum_{n=0}^{\infty}\left(\frac{3}{4}\right)^{n} \phi\left(4^{n} x\right)
$$

defines a continuous function on \mathbb{R}.
2. We continue to study properties of ϕ defined in the first exercise. Fix $x_{0} \in \mathbb{R}$. For every positive integer m define a real numeber δ_{m} by the conditions $\left|\delta_{m}\right|=4^{-m} / 2$ and the sign is fixed by the condition that there are no integers between $4^{m} x_{0}$ and $4^{m}\left(x_{0}+\delta_{m}\right)$. Consider the quotient

$$
\gamma_{n}=\frac{\phi\left(4^{n}\left(x_{0}+\delta_{m}\right)\right)-\phi\left(4^{n} x_{0}\right)}{\delta_{m}} .
$$

Prove that
(a) If $n>m$ then $\gamma_{n}=0$.
(b) If $0 \leq n \leq m$, then $\left|\gamma_{n}\right| \leq 4^{n}$ and $\left|\gamma_{m}\right|=4^{m}$.
3. This continues the study of f and ϕ defined in the previous exercises. Prove that

$$
\left|\frac{f\left(x_{0}+\delta_{m}\right)-f\left(x_{0}\right)}{\delta_{m}}\right| \geq \frac{1}{2}\left(3^{m}+1\right) .
$$

Conclude that f is not differentiable at x_{0}.
4. Compute the Fourier-transform of the characteristic function of the interval $[-a, a], a>0$.
5. Compute the Fourier-transform of the function

$$
f(x)= \begin{cases}1-|x|, & |x| \leq 1 \\ 0, & |x|>1\end{cases}
$$

