Introduction to Fourier–analysis

Home assignment 6

1. Let $\gamma : [a, b] \to \mathbb{R}^2$ be differentiable parametrization for the closed curve Γ . Prove that it is a parametrization by the arc-length if and only if the length of the curve from $\gamma(a)$ to $\gamma(s)$ for all s is equal to s - a, i.e.

$$\int_{a}^{s} |\gamma'(t)| dt = s - a, \quad \text{for all } s \in [a, b].$$

- 2. Prove that any differentiable curve admits a parametrization by the arc–length.
- 3. Prove the second part of Weyl's criterion: if a sequence $(\xi)_{i=1}^{\infty}$ is equidistributed then for all $k \in \mathbb{Z} \setminus \{0\}$ we have

$$\frac{1}{N}\sum_{n=1}^{N}e^{2\pi i k\xi_n} \to 0 \quad \text{as } N \to \infty.$$

Hint: Imitate the proof in the lectures by first considering an analogous statement for a characteristic function of an interval.

- 4. Prove that the sequence $(a \ln n)_{n=1}^{\infty}$ is not equidistributed for any $a \in \mathbb{R}$.
- 5. Suppose that $f : \mathbb{R} \to \mathbb{C}$ is a continuous periodic function with period 1 and that $(\xi_n)_{n=1}^{\infty}$ is an equidistributed sequence in [0, 1). Prove that if in addition

$$\int_0^1 f(x) \, dx = 0,$$

then uniformly in x,

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=1}^{N} f(x + \xi_n) = 0.$$

Hint: Approximate with trigonometric polynomials.

6. Let now $f : \mathbb{R} \to \mathbb{C}$ be a bounded measurable function and assume that

$$\int_0^1 f(x) \, dx = 0.$$

Prove that

$$\lim_{N \to \infty} \int_0^1 |\frac{1}{N} \sum_{n=1}^N f(x+\xi_n)|^2 \, dx = 0.$$