## Introduction to Fourier-analysis

Home assignment 5

1. Assume that $f$ is an $2 \pi$-periodic integrable function. Show that for all $n \in \mathbb{Z}$ we have

$$
\hat{f}(n)=-\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x+\pi / n) e^{-i n x} d x
$$

and hence

$$
\hat{f}(n)=\frac{1}{4 \pi} \int_{-\pi}^{\pi}(f(x)-f(x+\pi / n)) e^{-i n x} d x
$$

2. Assume that the function $f$ above also satisfies the Hölder-condition with exponent $\alpha$,

$$
|f(x+h)-f(x)| \leq C|h|^{\alpha},
$$

for some $0<\alpha \leq 1$ and all real $x$ and $h$. Show that the Fouriercoefficients of $f$ satisfy

$$
\hat{f}(n)=O\left(|n|^{-\alpha}\right) .
$$

3. Prove that the result given in the previous exercise is sharp by showing that the function

$$
f(x)=\sum_{k=0}^{\infty} 2^{-k \alpha} e^{i 2^{k} x}
$$

where $0<\alpha<1$ satisfies the Hölder-condition with exponent $\alpha$ and that

$$
\hat{f}(N)=N^{-\alpha},
$$

when $N=2^{k}$.
4. Assume that $f$ is a $2 \pi$ periodic function that satisfies a Lipschitzcondition with constant $K$, i.e.

$$
|f(x)-f(y)| \leq K|x-y| \quad \text { for all } x, y
$$

Define for $h>0$

$$
g_{h}(x)=f(x+h)-f(x-h) .
$$

Prove that

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g_{( }(x)\right|^{2} d x=\sum_{n=-\infty}^{\infty} 4|\sin (n h)|^{2}|\hat{f}(n)|^{2}
$$

and show that

$$
\sum_{-\infty}^{\infty} 4|\sin (n h)|^{2}|\hat{f}(n)|^{2} \leq K^{2} h^{2}
$$

5. Let $p$ be a positive integer and $f$ as in the previous exercise. By choosing $h=\pi / 2^{p+1}$ above show that

$$
\sum_{2^{p-1}<|n| \leq 2^{p}}|\hat{f}(n)|^{2} \leq \frac{K^{2} \pi^{2}}{2^{2 p+1}}
$$

6. Let again $f$ be as above. By estimating the sum $\sum_{2^{p-1}<|n| \leq 2^{p}}|\hat{f}(n)|$ prove that the Fourier series of $f$ converges absolutely.
