## Introduction to Fourier-analysis

Home assignment 4

1. Let $f:[-\pi, \pi] \rightarrow \mathbb{R}, f(\theta)=|\theta|$. Use Parseval's formula to compute the sums

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{4}}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{4}}
$$

2. Let $f$ be the $2 \pi$-periodic odd function defined on $[0, \pi]$ by $f(\theta)=$ $\theta(\pi-\theta)$. Prove that

$$
\sum_{n=0}^{\infty} \frac{1}{(2 n+1)^{6}}=\frac{\pi^{6}}{960}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{6}}=\frac{\pi^{6}}{945}
$$

3. Show that for $\alpha$ not an integer, the Fourier series of

$$
\frac{\pi}{\sin \pi \alpha} e^{i(\pi-x) \alpha}, \quad x \in[0,2 \pi],
$$

is given by

$$
\sum_{n=-\infty}^{\infty} \frac{e^{i n x}}{n+\alpha}
$$

4. Assume that the complex sequence $\left(a_{n}\right)$ has the property that

$$
\sum a_{n} b_{n}<\infty
$$

for all complex sequences $\left(b_{n}\right)$ such that $\sum\left|b_{n}\right|^{2}<\infty$. Prove that $\sum\left|a_{n}\right|^{2}<\infty$.
5. Let $X$ be a Banach space and $Y$ a normed space. Let $\left(\Lambda_{n}\right)$ be a sequence of bounded linear maps $X \rightarrow Y$ which are uniformly bounded, i.e. there exists a constant $M<\infty$ such that for all $n$ we have $\left\|\lambda_{n}\right\| \leq M$. Assume that there exists a dense set $E \subset X$ so that $\left(\Lambda_{n} x\right)$ converges in $Y$ for all $x \in E$. Prove, that $\left(\Lambda_{n} x\right)$ converges in $Y$ for all $x \in X$.
6. Let $f \in C(\mathbb{T})$. Prove that

$$
\lim _{N \rightarrow \infty} S_{N} f(\theta) / \ln N=0
$$

uniformly. On the other hand, assume that the complex sequence $\left(\lambda_{n}\right)$, $n \in \mathbb{N}$, satisfies

$$
\lim _{n \rightarrow \infty} \lambda_{n} / \ln n=0
$$

Prove that there exists an $f \in C(\mathbb{T})$ such that the sequence $\left(S_{N} f(0) / \lambda_{N}\right)$ is unbounded.

Hint: use the previous exercise and a better lower bound for the $L^{1}-$ norm of the Dirichlet-kernel.

