Introduction to Fourier–analysis

Home assignment 4

1. Let $f: [-\pi, \pi] \to \mathbb{R}, f(\theta) = |\theta|$. Use Parseval's formula to compute the sums

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^4}, \quad \sum_{n=1}^{\infty} \frac{1}{n^4}.$$

2. Let f be the 2π -periodic odd function defined on $[0,\pi]$ by $f(\theta) = \theta(\pi - \theta)$. Prove that

$$\sum_{n=0}^{\infty} \frac{1}{(2n+1)^6} = \frac{\pi^6}{960}, \quad \sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^6}{945}.$$

3. Show that for α not an integer, the Fourier series of

$$\frac{\pi}{\sin \pi \alpha} e^{i(\pi - x)\alpha}, \quad x \in [0, 2\pi],$$

is given by

$$\sum_{n=-\infty}^{\infty} \frac{e^{inx}}{n+\alpha}$$

4. Assume that the complex sequence (a_n) has the property that

$$\sum a_n b_n < \infty$$

for all complex sequences (b_n) such that $\sum |b_n|^2 < \infty$. Prove that $\sum |a_n|^2 < \infty$.

- 5. Let X be a Banach space and Y a normed space. Let (Λ_n) be a sequence of bounded linear maps $X \to Y$ which are uniformly bounded, i.e. there exists a constant $M < \infty$ such that for all n we have $\|\lambda_n\| \leq M$. Assume that there exists a dense set $E \subset X$ so that $(\Lambda_n x)$ converges in Y for all $x \in E$. Prove, that $(\Lambda_n x)$ converges in Y for all $x \in X$.
- 6. Let $f \in C(\mathbb{T})$. Prove that

$$\lim_{N \to \infty} S_N f(\theta) / \ln N = 0$$

uniformly. On the other hand, assume that the complex sequence (λ_n) , $n \in \mathbb{N}$, satisfies

$$\lim_{n \to \infty} \lambda_n / \ln n = 0.$$

Prove that there exists an $f \in C(\mathbb{T})$ such that the sequence $(S_N f(0)/\lambda_N)$ is unbounded.

Hint: use the previous exercise and a better lower bound for the L^{1-} norm of the Dirichlet–kernel.