Introduction to Fourier-analysis

Home assignment 3

1. Show that the Fejér-kernel can be written as

$$
F_{N}(x)=\frac{1}{N} \frac{\sin ^{2}(N x / 2)}{\sin ^{2}(x / 2)} .
$$

2. Prove that the series $\sum_{k=0}^{\infty}(-1)^{k}(1+k)$ is not Césaro-summable.
3. Prove that if the series $\sum c_{n}$ of complex numbers is Césaro-summable, and the sum is s, then $\sum c_{n}$ is Abel-summable to s.
4. Under certain conditions one can reverse the summability results, i.e. from Abel- or Césaro-summability deduce the summability of the original series. These kind of theorems are known as Tauberian-theorems. As an example, assume that the sequence $\left\{c_{n}\right\}$ of complex numbers satisfies $n c_{n} \rightarrow 0$ as $n \rightarrow \infty$, and that it is Césaro-summable to σ. Prove that $\sum c_{n}=\sigma$.
5. Again, assume that the sequence $\left\{c_{n}\right\}$ of complex numbers satisfies $n c_{n} \rightarrow 0$ as $n \rightarrow \infty$, but now that it is Abel-summable to σ. Prove that $\sum c_{n}=\sigma$.
6. Let $P_{r}(\theta)$ be the Poisson kernel in the unit disk \mathbb{D}. Let

$$
u(r, \theta)=\frac{\partial P_{r}(\theta)}{\partial \theta}, 0 \leq r<1,|\theta| \leq \pi
$$

Prove that u is harmonic in \mathbb{D} and that for all θ

$$
\lim _{r \rightarrow 1-} u(r, \theta)=0
$$

However, u is not identically zero. Why is this not a contradiction with the results given in the lectures?

