Introduction to Fourier-analysis

Home assignment 1

1. Let f be 2π-periodic Riemann-integrable function. Show, that

$$
f(\theta) \sim \hat{f}(0)+\sum_{n \geq 1}[\hat{f}(n)+\hat{f}(-n)] \cos (n \theta)+i[\hat{f}(n)-\hat{f}(-n)] \sin (n \theta) .
$$

2. Assume that f is as above and that it is an even function, i.e $f(-\theta)=$ $f(\theta)$. Show that $\hat{f}(n)=\hat{f}(-n)$, and the Fourier series of f is the cosineseries.
3. Assume that f is as above and that it is an odd function, i.e $f(-\theta)=$ $-f(\theta)$. Show that $\hat{f}(n)=-\hat{f}(-n)$, and the Fourier series of f is the sine-series.
4. Define $f:[0, \pi] \rightarrow \mathbb{C}$ by letting $f(\theta)=\theta(\pi-\theta)$, and extend it to all $\theta \in \mathbb{R}$ as an odd 2π-periodic function. Show that

$$
f(\theta)=\frac{8}{\pi} \sum_{k \text { odd, } k \geq 1} \frac{\sin (k \theta)}{k^{3}}
$$

5. Let $f(\theta)=|\theta|, \theta \in[0,2 \pi]$. Prove that $\hat{f}(0)=\pi / 2$ and

$$
\hat{f}(n)=\frac{-1+(-1)^{n}}{\pi n^{2}}, n \neq 0
$$

6. Using the previous exercise show that

$$
\sum_{n \text { odd, } n \geq 1} \frac{1}{n^{2}}=\frac{\pi^{2}}{8}, \quad \sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6} .
$$

