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Chapter 1

Introduction

Inverse problems are the opposites of direct problems. Informally, in a direct
problem one finds an effect from a cause, and in an inverse problem one is given
the effect and wants to recover the cause. The most usual situation giving rise to
an inverse problem is the need to interpret indirect physical measurements of an
unknown object of interest.

For example in medical X-ray tomography the direct problem would be to
find out what kind of X-ray projection images would we get from a patient whose
internal organs we know precisely. The corresponding inverse problem is to recon-
struct the three-dimensional structure of the patient’s insides given a collection
of X-ray images taken from different directions.

-Direct problem

� Inverse problem

Here the patient is the cause and the collection of X-ray images is the effect.
Another example comes from image processing. Define the direct problem

as finding out how a given sharp photograph would look like if the camera was
incorrectly focused. The inverse problem known as deblurring is finding the sharp
photograph from a given blurry image.

-Direct problem

� Inverse problem
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Here the cause is the sharp image and the effect is the blurred image.
There is an apparent symmetry in the above explanation: without further

restriction of the definitions, direct problem and inverse problem would be in
identical relation with each other. For example, we might take as the direct
problem the determination of a positive photograph from the knowledge of the
negative photograph.

-Direct problem

� “Inverse problem”

In this case the corresponding “inverse problem” would be inverting a given pho-
tograph to arrive at the negative. Here both problems are easy and stable, and
one can move between them repeatedly.

However, inverse problems research concentrates on situations where the in-
verse problem is more difficult to solve than the direct problem. More precisely,
let us recall the notion of a well-posed problem introduced by Jacques Hadamard
(1865-1963):

The problem must have a solution (existence). (1.1)

The problem must have at most one solution (uniqueness). (1.2)

The solution must depend continuously on input data (stability). (1.3)

An inverse problem, in other words an ill-posed problem, is any problem that is
not well-posed. Thus at least one of the conditions (1.1)–(1.3) must fail in order
for a problem to be an inverse problem. This rules out the positive-negative
example above.

To make the above explanation more precise, let us introduce the linear mea-
surement model discussed throughout the document:

m = Ax+ ε,

where x ∈ R
n and m ∈ R

k are vectors, A is a k × n matrix, and ε is a random
vector taking values in Rk. Here m is the data provided by a measurement device,
x is a discrete representation of the unknown object, A is a matrix modeling the
measurement process, and ε is random error. The inverse problem is

Given m, find an approximation to x.

We look for a reconstruction procedureR : Rk → Rn that would satisfy R(m) ≈ x,
the approximation being better when the size ‖ε‖ of the noise is small. The
connection between R and Hadamard’s notions is as follows: m is the input and
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R(m) is the output. Now (1.1) means that the function R should be defined on all
of Rk, condition (1.2) states that R should be a single-valued mapping, and (1.3)
requires that R should be continuous. For well-posed problems one can simply
take R(m) = A−1m, but for ill-posed problems that straightforward approach
will fail.

This document is written to serve as lecture notes for my course Inverse
Problems given at Department of Mathematics of Tampere University of Tech-
nology. Since more than half the students major in engineering, the course is
designed to be very application-oriented. Computational examples abound, and
the corresponding Matlab routines are available at the course web site. Several
discrete models of continuum measurements are constructed for testing purposes.
We restrict to linear inverse problems only to avoid unnecessary technical diffi-
culties. Special emphasis is placed on extending the reconstruction methods to
practical large-scale situations; the motivation for this stems from the author’s
experience of research and development work on medical X-ray imaging devices
at Instrumentarium Imaging, GE Healthcare, and Palodex Group.

Important sources of both inspiration and material include the Finnish lecture
notes created and used by Erkki Somersalo in the 1990’s, the books by Jari Kaipio
and Erkki Somersalo [13], Andreas Kirsch [15], Curt Vogel [28] and Per Christian
Hansen [9], and the lecture notes of Guillaume Bal [1].

I thank the students of the fall 2008 course for valuable comments that im-
proved these lecture notes (special thanks to Esa Niemi, who did an excellent job
in editing parts of the manuscript, and to Lauri Harhanen for his work on the
Gibbs sampler computation).
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Chapter 2

Linear measurement models

The basic model for indirect measurements used in this course is the following
matrix equation:

m = Ax+ ε, (2.1)

where x ∈ R
n and m ∈ R

k are vectors, A is a k × n matrix, and ε is a random
vector taking values in Rk. In Sections 2.2 and 2.3 below we will construct a
couple of models of the form (2.1) explicitly by discretizing continuum models of
physical situations. We will restrict ourselves to white Gaussian noise only and
give a brief discussion of noise statistics in Section 2.1.

2.1 Measurement noise

In this course we restrict ourselves to Gaussian white noise. In terms of the
random noise vector

ε = [ε1, ε2, . . . , εk]T

appearing in the basic equation (2.1) we require that each random variable εj :
Ω → R with 1 ≤ j ≤ k is independently distributed according to the normal
distribution: εj ∼ N (0, σ2), where σ > 0 is the standard deviation of εj . In other
words, the probability density function of εj is

1

σ
√

2π
e−s2/(2σ2).

We will call σ the noise level in the sequel.
In many examples the noise may be multiplicative instead of additive, and

the noise statistics may differ from Gaussian. For instance, photon counting
instruments typically have Poisson distributed noise. As mentioned above, these
cases will not be discussed in this treatise.
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2.2 Convolution

Linear convolution is a useful process for modeling a variety of practical measure-
ments. The one-dimensional case with a short and simple point spread function
will serve us as a basic example that can be analyzed in many ways.

When the point spread function is longer and more complicated, the one-
dimensional deconvolution (deconvolution is the inverse problem corresponding
to convolution understood as direct problem) can model a variety of practical en-
gineering problems, including removing blurring by device functions in physical
measurements or inverting finite impulse response (FIR) filters in signal process-
ing.

Two-dimensional deconvolution is useful model for deblurring images; in other
words removing errors caused by imperfections in an imaging system. The di-
mension of inverse problems appearing in image processing can be very large;
thus two-dimensional deconvolution acts as a test bench for large-scale inversion
methods.

2.2.1 One-dimensional case

We build a model for one-dimensional deconvolution. The continuum situation
concerns a signal X : [0, 1] → R that is blurred by a point spread function (psf)
ψ : R → R. (Other names for the point spread function include device function,
impulse response, blurring kernel, convolution kernel and transfer function.) We
assume that the psf is strictly positive: ψ(s) ≥ 0 for all s ∈ R. Furthermore,
we require that ψ is symmetric (ψ(s) = ψ(−s) for all s ∈ R) and compactly
supported (ψ(s) ≡ 0 for |s| > a > 0). Also, we use the following normalization
for the psf:

∫

R

ψ(λ) dλ = 1. (2.2)

The continuum measurement M : [0, 1] → R is defined with the convolution
integral

M(s) = (ψ ∗ X )(s) =

∫

R

ψ(λ)X (s − λ) dλ, s ∈ [0, 1], (2.3)

where we substitute the value X (s) = 0 for s < 0 and s > 1.
Note that we do not include random measurement noise in this continuum

model. This is just to avoid technical considerations related to infinite-dimensional
stochastic processes.

Let us build a simple example to illustrate our construction. Define the signal
and psf by the following formulas:

X (s) =







1 for 1
4 ≤ s ≤ 1

2 ,
2 for 3

4 ≤ s ≤ 7
8 ,

0 otherwise,
ψ(s) =

{

10 for |s| ≤ 1
20 ,

0 otherwise.
(2.4)
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Figure 2.1: Continuum example of one-dimensional convolution.

Note that ψ satisfies the requirement (2.2). See Figure 2.1 for plots of the point
spread function ψ and the signal X and the measurementM.

Next we need to discretize the continuum problem to arrive at a finite-
dimensional measurement model of the form (2.1). Throughout the course the
dimension of the discrete measurement m is denoted by k, so let us define
m = [m1,m2, . . . ,mk]

T ∈ R
k. We choose in this section to represent the un-

known as a vector x with the same dimension as the measurement m. The reason
for this is just the convenience of demonstrating inversion with a square-shaped
measurement matrix; in general the dimension of x can be chosen freely. Define

sj := (j − 1)∆s for j = 1, 2, . . . , k, where ∆s :=
1

k − 1
.

Now vector x = [x1, x2, . . . , xk]
T ∈ R

k represents the signal X as xj = X (sj).
We point out that the construction of Riemann integral implies that for any

reasonably well-behaving function f : [0, 1] → R we have

∫ 1

0
f(s) ds ≈ ∆s

k
∑

j=1

f(sj), (2.5)

the approximation becoming better when k grows. We will repeatedly make use
of (2.5) in the sequel.

Let us construct a matrix A so that Ax approximates the integration in (2.3).
We define a discrete psf denoted by

p = [p−N , p−N+1, . . . , p−1, p0, p1, . . . , pN−1, pN ]T

as follows. Recall that ψ(s) ≡ 0 for |s| > a > 0. Take N > 0 to be the smallest
integer satisfying the inequality N∆s > a and set

p̃j = ψ(j∆s) for j = −N, . . . ,N.

By (2.5) the normalization condition (2.2) almost holds: ∆s
∑N

j=−N p̃j ≈ 1. How-
ever, in practice it is a good idea to normalize the discrete psf explicitly by the
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formula

p =



∆s

N
∑

j=−N

p̃j





−1

p̃; (2.6)

then it follows that

∆s
N
∑

j=−N

pj = 1.

Discrete convolution is defined by the formula

(p ∗ x)j =

N
∑

ν=−N

pνxj−ν, (2.7)

where we implicitly take xj = 0 for j < 1 and j > k. Then we define the
measurement by

mj = ∆s(p ∗ x)j + εj, (2.8)

The measurement noise ε is explained in Section 2.1. Now (2.7) is a Riemann
sum approximation to the integral (2.3) in the sense of (2.5), so we have

mj ≈M(sj) + εj .

But how to write formula (2.8) using a matrix A so that we would arrive at
the desired model (2.1)? More specifically, we would like to write







m1
...
mk






=







a11 · · · a1k
...

. . .
...

ak1 · · · akk













x1
...
xk






+







ε1
...
εk






.

The answer is to build a circulant matrix having the elements of p appearing
systematically on every row of A. We explain this by example.

We take N = 2 so the psf takes the form p = [p−2 p−1 p0 p1 p2]
T .

According to (2.7) we have (p∗x)1 = p0x1+p−1x2+p−2x3. This can be visualized
as follows:

p2 p1 p0 p−1 p−2

x1 x2 x3 x4 x5 x6 . . .

It follows that the first row of matrix A is [p0 p1 p2 0 · · · 0]. The con-
struction of the second row comes from the picture

p2 p1 p0 p−1 p−2

x1 x2 x3 x4 x5 x6 . . .

and the third row from the picture

p2 p1 p0 p−1 p−2

x1 x2 x3 x4 x5 x6 . . .
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Figure 2.2: The dots denote values of discrete objects and the lines show the continuum
psf 2.1 for comparison. Note that the continuum and discrete psfs do not coincide very
accurately; this is due to the normalization (2.6).

The general construction is hopefully clear now, and the matrix A looks like this:

A =

































p0 p−1 p−2 0 0 0 · · · 0
p1 p0 p−1 p−2 0 0 · · · 0
p2 p1 p0 p−1 p−2 0 · · · 0
0 p2 p1 p0 p−1 p−2 · · · 0
...

. . .
...

. . .

0 · · · p2 p1 p0 p−1 p−2

0 · · · 0 p2 p1 p0 p−1

0 · · · 0 0 p2 p1 p0

































The Matlab command convmtx can be used to construct such convolution matri-
ces.

Let us return to example (2.4). See Figure 2.2 for plots of discretized psfs
corresponding to ψ with different choices of k. Further, see Figures 2.3 and 2.4
for examples of measurements m = Ax + ε done using the above type convolu-
tion matrix with k = 32 and k = 64, respectively. We can see that with the
proper normalization (2.6) of the discrete psfs our discretized models do produce
measurements that approximate the continuum situation.
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Figure 2.3: Discrete example of one-dimensional convolution. Here k = n = 32 and we
use the discrete psf shown in the leftmost plot of Figure 2.2. The dots denote values of
discrete objects and the lines show the corresponding continuum objects for comparison.
The noise level is σ = 0.02.

0 1/4 1/2 3/4 7/8 1

0

1
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Signal x Non-noisy measurement Ax Noisy measurement Ax + ε

Figure 2.4: Discrete example of one-dimensional convolution. Here k = n = 64 and we
use the discrete psf shown in the middle plot of Figure 2.2. The dots denote values of
discrete objects and the lines show the corresponding continuum objects for comparison.
The noise level is σ = 0.02.
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2.2.2 Two-dimensional case

Consider a pixel image X with K rows and L columns. We index the pixels
according to Matlab standard:

X11 X12 X13 X14 · · · X1L

X21 X22 X23

X31 X32 X33

X41
. . .

...

XK1 · · · XKL

.

We introduce a two-dimensional point spread function (here 3 × 3 for ease of
demonstration) p with the following naming convention:

p =

p(−1)(−1) p(−1)0 p(−1)1

p0(−1) p00 p01

p1(−1) p10 p11

. (2.9)

The two-dimensional convolution p ∗X is defined by

(p ∗X)kℓ =

1
∑

i=−1

1
∑

j=−1

X(k−i)(ℓ−j)pij (2.10)

for 1 ≤ k ≤ K and 1 ≤ ℓ ≤ L with the convention that xkℓ = 0 whenever k, ℓ < 1
or k > K or ℓ > L. The operation p ∗X can be visualized by a mask p moving
over the image X and taking weighted sums of pixels values:

Consider now the direct problem X 7→ p ∗X. How to write it in the standard
form m = Ax? Express the pixel image X as a vector x ∈ RKL by renumerating
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Figure 2.5: Nonzero elements (blue dots) in a two-dimensional convolution matrix cor-
responding to an 8× 8 image and 3× 3 point spread function. The 8× 8 block structure
is indicated by red lines.

the pixels as follows:

x1 xK+1

x2 xK+2

x3 xK+3

· ·
· ·
· ·
· ·
xK x2K xKL

(2.11)

Note that this renumeration corresponds to the Matlab operation x = X(:). The
KL×KL measurement matrix A can now be constructed by combining (2.9) and
(2.10) and (2.11). In the case K = 8 and L = 8 the nonzero elements in A are
located as shown in Figure 2.5. The exact construction is left as an exercise.
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2.3 Tomography

Tomography is related to recovering a function from the knowledge of line inte-
grals of the function over a collection of lines.

In this work tomographic problems provide examples with nonlocal merging
of information (as opposed to roughly local convolution kernels) combined natu-
rally with large-scale problems. Also, geometrical restrictions in many practical
applications lead to limited angle tomography, where line integrals are available
only from a restricted angle of view. The limited angle tomography is signifi-
cantly more ill-posed than full-angle tomography, providing excellent test cases
for inversion methods.

In X-ray tomography the line integrals of the function are based on X-ray im-
ages. X-ray imaging gives a relation between mathematics and real world via the
following model. When a X-ray travels through a physical object (patient) along
a straight line L, interaction between radiation and matter lowers the intensity
of the ray. We think of the X-ray having initial intensity I0 when entering the
object and smaller intensity I1 when exiting the object.

L f(x)

The physical object is represented by a non-negative attenuation coefficient
function f(x), whose value gives the relative intensity loss of the X-ray within a
small distance dx:

dI

I
= −f(x)dx.

A thick tissue such as bone has higher attenuation coefficient than, say, muscle.
Integration from initial to final state gives

∫ 1

0

I ′(x)dx
I(x)

= −
∫ 1

0
f(x)dx,

where the left-hand side equals log I1 − log I0 = log I1/I0. Thus we get

I1
I0

= e−
R

L
f(x)dx. (2.12)

Now the left hand side of (2.12) is known from measurements (I0 by calibration
and I1 from detector), whereas the right hand side of (2.12) consists of integrals
of the unknown function f over straight lines.

We remark that in the above model we neglect scattering phenomena and the
energy dependence of the attenuation function.
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Figure 2.6: Left: discretized object and an X-ray traveling through it. Right: four
pixels from the left side picture and the distances (in these pixels) traveled by the X-ray
corresponding to the measurement m7. Distance ai,j corresponds to the element on the
ith row and jth column of matrix A.

In order to express the continuous model in the matrix form (2.1) we divide
the object into pixels (or voxels in 3D case), e.g. like shown in Figure 2.6. Now
each component of x represents the value of the unknown attenuation coefficient
function f in the corresponding pixel. Assume we have a measurement mi of the
line integral of f over line L. Then we can approximate

mi =

∫

L
f(x)dx ≈

n
∑

j=1

ai,jxj , (2.13)

where ai,j is the distance that L “travels” in the pixel corresponding to xj . Fur-
ther, if we have k measurements in vector m ∈ R

k, then (2.13) yields a matrix
equation m = Ax, where matrix A = (ai,j).

To illustrate how the matrix A is constructed, consider the discretization and
X-ray (measurement m7) in Figure 2.6. The equation for the measurement m7 is

m7 = a7,2x2 + a7,6x6 + a7,10x10 + a7,14x14 + a7,18x18 + a7,19x19 + a7,23x23.

In other words the ith row of A is related to the measurement mi. Let us take
another example. With the following discretization and measurements

x1

x2

x3

x4

x5

x6

x7

x8

x9

m1

m2

m3

m4

m5

m6
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the model can be written in the matrix form as follows:

















0
√

2 0 0 0
√

2 0 0 0√
2 0 0 0

√
2 0 0 0

√
2

0 0 0
√

2 0 0 0
√

2 0
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1













































x1

x2

x3

x4

x5

x6

x7

x8

x9





























=

















m1

m2

m3

m4

m5

m6

















.

Tomographic problems can be classified according to the measurement data
into three cases:

• full angle full data tomography,

• limited angle tomography,

• sparse data tomography.

In the first case we have a sufficient amount of measurements from all around
the object in order to compute the reconstruction stably. In fact, the full angle
full data tomography is not very ill-posed problem.

Instead, in the limited angle tomography the projection images are available
only from a restricted angle of view and the reconstruction process is very sensitive
to measurement error. In addition, due to the incompleteness of the measurement
data, it is not possible to reconstruct the object perfectly, even though there were
no errors in the data. Limited angle tomography occurs in technical applications,
for instance, in dental imaging.

In the case of sparse data tomography we have only a few projection images
but possibly from any direction. This case leads to an extremely ill-posed inverse
problem and therefore some kind of prior knowledge of the solution is necessary
in order to reconstruct the object properly. In medical imaging it is reasonable to
minimize the patient’s radiation dose, which makes the sparse data tomography
practically interesting problem.

2.4 Numerical differentiation

Consider continuous functions on [0, 1]. Now the direct problem is: given a
continuous function x(t), t ∈ [0, 1], find it’s antiderivative y(t), t ∈ [0, 1], that
satisfies

y(t) =

∫ t

0
x(s)ds, t ∈ [0, 1], and y(0) = 0. (2.14)

The corresponding inverse problem is“given a continuously differentiable function
y(t), t ∈ [0, 1], y(0) = 0, find its derivative x(t), t ∈ [0, 1]”. In other words the
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task is to solve (2.14) for x. Our aim is now to write this problem in the standard
form (2.1).

Assume the function y is given as a measurement m ∈ R
k, whose ith compo-

nent mi corresponds to the value y(ti), where ti = i
k . With this discretization

the integral in (2.14) can be approximated simply as

∫ ti

0
x(s)ds ≈ 1

k

i
∑

j=1

xj, (2.15)

where xj = x(tj). (Note that there are more sophisticated methods to compute
integrals numerically, e.g. Simpson’s rule, but we use formula (2.15) here for
simplicity.) Using this approximation we get

mi =
1

k

i
∑

j=1

xj .

Thus the model between the measurement m and the unknown derivative x can
be written in matrix form m = Ax+ ε, where

A =















1
k 0 0 0 . . . 0
1
k

1
k 0 0 . . . 0

1
k

1
k

1
k 0 . . . 0

...
...

...
...

. . .
...

1
k

1
k

1
k

1
k . . . 1

k















. (2.16)

2.5 Laplace transform and its inverse

Let f : [0,∞)→ R. The Laplace transform F of f is defined by

F (s) =

∫ ∞

0
e−stf(t)dt, s ∈ C, (2.17)

provided that the integral converges. The direct problem is to find the Laplace
transform for a given function f according to (2.17). The opposite to this, i.e. the
inverse problem, is: given a Laplace transform F , find the corresponding function
f .

Assume we know the values of F in real points 0 < s1 < s2 < . . . < sn <∞.
Then we may approximate the integral in (2.17) for example with the trapezoidal
rule as

∫ ∞

0
e−stf(t)dt ≈ tk

k

(

1

2
e−st1f(t1) + e−st2f(t2) + e−st3f(t3) + . . .

+e−stk−1f(tk−1) +
1

2
e−stkf(tk)

)

,

(2.18)
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where vector t = [t1 t2 . . . tk]
T ∈ R

k, 0 ≤ t1 < t2 < . . . < tk, contains the points,
in which the unknown function f will be evaluated. By denoting xl = f(tl), l =
1, . . . , k, and mj = F (sj), j = 1, . . . , n, and using (2.18), we get a linear model
of the form m = Ax+ ε with

A =
tk
k











1
2e

−s1t1 e−s1t2 e−s1t3 . . . e−s1tk−1 1
2e

−s1tk

1
2e

−s2t1 e−s2t2 e−s2t3 . . . e−s2tk−1 1
2e

−s2tk

...
...

1
2e

−snt1 e−snt2 e−snt3 . . . e−sntk−1 1
2e

−sntk











.

2.6 Heat equation

Consider the temperature distribution in a one-dimensional wire with a length
of π. The heat equation for the temperature distribution u(s, t), s ∈ [0, π], t ∈
[0,∞) is a partial differential equation of the form

∂u(s, t)

∂t
= C

∂2u(s, t)

∂s2
, (2.19)

where C ∈ R is a constant called thermal diffusivity. For simplicity, we take
C = 1. We assume that the temperature in the ends of the wire is held at zero,
that is

u(0, t) = 0 = u(1, t), ∀ t ∈ [0,∞) (2.20)

and also, that the initial temperature distribution is

u(s, 0) = f(s), s ∈ [0, π]. (2.21)

With this model the easier (direct) problem would be to find the temperature
distribution u(s, T ) at certain time T > 0, when we know the initial temperature
distribution f(s). However, much more difficult problem is the inverse problem:
given a temperature distribution u(s, T ), find the initial temperature distribution
f(s).

The partial differential equation (2.19) with boundary conditions (2.20) and
initial conditions (2.21) can be solved for example by separation of variables, and
the solution is (C = 1)

u(s, t) =
2

π

∫ π

0
k(s, y)f(y)dy, s ∈ [0, π] (2.22)

where

k(s, y) =
∞
∑

i=1

e−i2t sin(is) sin(iy). (2.23)

Divide the wire into n points s1, s2, . . . , sn, and assume the temperature distribu-
tion measured in these points at time T is given by vector m ∈ Rn. Furthermore,
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denote xi = f(si). Then computing the integral in (2.22) with trapezoidal rule
yields a linear model of the form m = Ax+ ε, where

A =
2

n











1
2k(s1, s1) k(s1, s2) k(s1, s3) . . . k(s1, sn−1)

1
2k(s1, sn)

1
2k(s2, s1) k(s2, s2) k(s2, s3) . . . k(s2, sn−1)

1
2k(s2, sn)

...
1
2k(sn, s1) k(sn, s2) k(sn, s3) . . . k(sn, sn−1)

1
2k(sn, sn)











. (2.24)

2.7 Exercises

1. Let x ∈ R
8 be a signal and p = [p−1 p0 p1]

T a point spread function.
Write down the 8 × 8 matrix A modeling the one-dimensional convolution
p ∗ x. Use the periodic boundary condition xj = xj+8 for all j ∈ Z.

2. In the above figure, thin lines depict pixels and thick lines X-rays. Give a
numbering to the nine pixels (x ∈ R9) and to the six X-rays (m ∈ R6), and
construct the measurement matrix A. The length of the side of a pixel is
one.

3. Let X ∈ R
ν2

be an image of size ν×ν and p ∈ R
q×q a point spread function.

Denote by
A : R

n → R
n

the matrix representing the linear operator X 7→ p∗X (with zero extension
of the image outside the boundaries) in the standard coordinates of R

n.
Here n = ν2. Construct matrix A in the case ν = 5 and q = 3.

4. Show that the matrix A in the previous exercise is symmetric (AT = A) for
any ν > 1 and q > 1.
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Chapter 3

Ill-posedness and inverse

crimes

We move from the direct problem to the inverse problem regarding the measure-
ment model m = Ax+ε. The direct problem is to determine m when x is known,
and the inverse problem is

Given m, reconstruct x. (3.1)

In this section we explore various problems related to the seemingly simple task
(3.1).

3.1 Naive reconstruction attempts

Let’s try to reconstruct a one-dimensional signal by deconvolution. Choose k =
n = 64 and compute both ideal measurement y = Ax and noisy measurement
m = Ax + ε as in Figure 2.4. The simplest thing to try is to recover x by
applying the inverse of matrix A to the measurement: x = A−1m. As we see in
the rightmost plot of Figure 3.1, the result looks very bad: the measurement noise
seems to get amplified in the reconstruction process. To get a more quantitative
idea of the badness of the reconstruction, let us introduce a relative error formula
for comparing the reconstruction to the original signal:

‖original − reconstruction‖
‖original‖ · 100%. (3.2)

We calculate 40% relative error for the reconstruction from data with noise level
σ = 0.02. Let us try the ideal non-noisy case y = Ax. The middle plot of Figure
3.1 shows the vector x = A−1y that recovers the original x perfectly.

What is going on? Why is there such a huge difference between the two cases
that differ only by a small additive random error component?

Perhaps we are modeling the continuum measurement too coarsely. However,
this seems not to be the case since repeating the above test with k = 128 produces
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0 1/4 1/2 3/4 7/8 1

0

1

2

0 1/4 1/2 3/4 7/8 1 0 1/4 1/2 3/4 7/8 1

Relative error 0% (inverse crime) Relative error 40%

Figure 3.1: Left: the original signal x ∈ R64. Middle: reconstruction from ideal data
y = Ax by formula x = A−1y. The surprisingly good quality is due to inverse crime.
Right: reconstruction from noisy data m = Ax + ε by formula x = A−1m. The noise
level is σ = 0.02. The percentages on the plots are relative errors as defined in (3.2).

no results at all: when Matlab tries to compute either x = A−1y or x = A−1m,
only vectors full of NaNs, or not-a-numbers, appear. There is clearly something
strange going on.

Actually we are dealing with two separate problems above. The perfect re-
construction result in the middle plot of Figure 3.1 is just an illusion resulting
from the so-called inverse crime where one simulates the data and implements
the reconstruction using the same computational grid. The amplification of noise
in the reconstruction shown in the rightmost plot of Figure 3.1 is a more profound
problem coming from the ill-posedness of the continuum deconvolution task. Let
us next discuss both of these problems in detail.

3.2 Inverse crime

Inverse crimes, or too-good-to-be-true reconstructions, may appear in situations
when data for inverse problems is simulated using the same computational grid
that is used in the inversion process. Note carefully that inverse crimes are not
possible in situations where actual real-world measured data is used; it is only a
problem of computational simulation studies.

Let us revisit the example of Section 3.1. Now we create the measurement
data on a grid with k = 487 points. (The reason for the apparently strange
choice 487 is simply that the fine grid used for simulation of measurement is not
a multiple of the coarse grid where the inversion takes place.) Then we interpolate
that measurement to the grid with k = 64 points using linear interpolation, and
we add a noise component ε ∈ R

64 with noise level σ = 0.02. This way the
simulation of the measurement data can be thought of fine modelling of the
continuum problem, and the interpolation procedure with the addition of noise
models a practical measurement instrument.

Now we see a different story: compare Figures 3.1 and 3.2. The reconstruction
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0 1/4 1/2 3/4 7/8 1

0

1
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0 1/4 1/2 3/4 7/8 1 0 1/4 1/2 3/4 7/8 1

Relative error 40% Relative error 100%

Figure 3.2: Left: the original signal x ∈ R64. Middle: reconstruction from ideal data
y = Ax by formula x = A−1y. The inverse crime is avoided by simulating the data on
a finer grid. Right: reconstruction from noisy data m = Ax + ε by formula x = A−1m.
The noise level is σ = 0.02. The percentages on the plots are relative errors as defined
in (3.2). Compare these plots to those in Figure 3.1.

from ideal data is now quite erroneous as well, and the relative error percentage
in the reconstruction from noisy data jumped up from 40% to a whopping 100%.
The conclusion is that we have successfully avoided the inverse crime but are on
the other hand faced with huge instability issues. Let us next attack them.

3.3 Singular value analysis of ill-posedness

Let A be a k×n matrix and consider the measurement m = Ax+ ε. The inverse
problem “given m, find x” seems to be formally solvable by approximating x with
the vector

A−1m.

However, as we saw in sections 3.1 and 3.2, there are problems with this simple
approach. Let us discuss such problems in detail.

Recall the definitions of the following linear subspaces related to the matrix
A:

Ker(A) = {x ∈ R
n : Ax = 0},

Range(A) = {y ∈ R
k : there exists x ∈ R

n such that Ax = y},
Coker(A) = (Range(A))⊥ ⊂ R

k.

See Figure 3.3 for a diagram illustrating these concepts.
Now if k > n then dim(Range(A)) < k and we can choose a nonzero y0 ∈

Coker(A) as shown in Figure 3.3. Even in the case ε = 0 we have problems
since there does not exist any x ∈ R

n satisfying Ax = y0, and consequently the
existence condition (1.1) fails since the output A−1y0 is not defined for the input
y0. In case of nonzero random noise the situation is even worse since even though
Ax ∈ Range(A), it might happen that Ax+ ε 6∈ Range(A).
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The matrix A maps bijectively

between (Ker(A))⊥
and Range(A)

Rn RkA -

Ker(A)

(Ker(A))⊥ Coker(A)

Range(A)•x0

•y0

Figure 3.3: This diagram illustrates various linear subspaces related to a matrix mapping
Rn to Rk. The two thick vertical lines represent the linear spaces Rn and Rk; in this
schematic picture we have n = 7 and k = 6. Furthermore, dim(Ker(A)) = 3 and
dim(Range(A)) = 4 and dim(Coker(A)) = 2. Note that the 4-dimensional orthogonal
complement of Ker(A) in Rn is mapped in a bijective manner to Range(A). The points
x0 ∈ Ker(A) and y0 ∈ Coker(A) are used in the text.

If k < n then dim(Ker(A)) > 0 and we can choose a nonzero x0 ∈ Ker(A)
as shown in Figure 3.3. Then even in the case ε = 0 we have a problem of
defining A−1m uniquely since both A−1m and A−1m + x0 satisfy A(A−1m) =
m = A(A−1m+ x0). Thus the uniqueness condition (1.2) fails unless we specify
an explicit way of dealing with the null-space of A.

The above problems with existence and uniqueness are quite clear since they
are related to integer-valued dimensions. In contrast, ill-posedness related to
the continuity condition (1.3) is more tricky in our finite-dimensional context.
Consider the case n = k so A is a square matrix, and assume that A is invertible.
In that case we can write

A−1m = A−1(Ax+ ε) = x+A−1ε, (3.3)

where the error A−1ε can be bounded by

‖A−1ε‖ ≤ ‖A−1‖‖ε‖.

Now if ‖ε‖ is small and ‖A−1‖ has reasonable size then the error A−1ε is small.
However, if ‖A−1‖ is large then the error A−1ε can be huge even when ε is small.
This is the kind of amplification of noise we see in Figure 3.2.

Note that if ε = 0 in (3.3) then we do have A−1m = x even if ‖A−1‖ is large.
However, in practice the measurement data always has some noise, and even
computer simulated data is corrupted with round-off errors. Those inevitable
perturbations prevent using A−1m as a reconstruction method for an ill-posed
problem.

Let us now discuss a tool that allows explicit analysis of possible difficulties
related to Hadamard’s conditions, namely singular value decomposition. We know
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from matrix algebra that any matrix A ∈ R
k×n can be written in the form

A = UDV T , (3.4)

where U ∈ R
k×k and V ∈ R

n×n are orthogonal matrices, that is,

UTU = UUT = I, V TV = V V T = I,

and D ∈ R
k×n is a diagonal matrix. In the case k = n the matrix D is square-

shaped: D = diag(d1, . . . , dk). If k > n then

D =

[

diag(d1, . . . , dn)
0(k−n)×n

]

=



























d1 0 · · · 0

0 d2
...

...
. . .

0 · · · · · · dn

0 · · · · · · 0
...

...
0 · · · · · · 0



























, (3.5)

and in the case k < n the matrix D takes the form

D = [diag(d1, . . . , dk),0k×(n−k)]

=













d1 0 · · · 0 0 · · · 0

0 d2
...

...
...

...
. . .

...
...

...
0 · · · · · · dk 0 · · · 0













. (3.6)

The diagonal elements dj are nonnegative and in decreasing order:

d1 ≥ d2 ≥ . . . ≥ dmin(k,n) ≥ 0. (3.7)

Note that some or all of the dj can be equal to zero.
The right side of (3.4) is called the singular value decomposition (svd) of

matrix A, and the diagonal elements dj are the singular values of A.
Failure of Hadamard’s existence and uniqueness conditions can now be read off

the matrix D: if D has a column of zeroes then dim(Ker(A)) > 0 and uniqueness
fails, and if D has a row of zeroes then dim(Coker(A)) > 0 and the existence
fails. Note that if dmin(k,n) = 0 then both conditions fail.

Ill-posedness related to the continuity condition (1.3) is related to sizes of
singular values. Consider the case n = k and dn > 0, when we do not have the
above problems with existence or uniqueness. It seems that nothing is wrong
since we can invert the matrix A as

A−1 = V D−1UT , D−1 = diag(
1

d1
, . . . ,

1

dk
),
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and define R(y) = A−1y for any y ∈ R
k. The problem comes from the condition

number

Cond(A) :=
d1

dk
(3.8)

being large. Namely, if d1 is several orders of magnitude greater than dk then
numerical inversion of A becomes difficult since the diagonal inverse matrix D−1

contains floating point numbers of hugely different size. This in turn leads to
uncontrollable amplification of truncation errors.

Strictly mathematically speaking, though, A is an invertible matrix even in
the case of large condition number, and one may ask how to define ill-posedness
in the sense of condition (1.3) failing in a finite-dimensional measurement model?
(This question has actually been asked by a student every time I have lectured
this course.) The answer is related to the continuum problem approximated by
the matrix model. Suppose that we model the continuum measurement by a
sequence of matrices Ak having size k×k for k = k0, k0 +1, k0 +2, . . . so that the
approximation becomes better when k grows. Then we say that condition (1.3)
fails if

lim
k→∞

Cond(Ak) =∞.

So the ill-posedness cannot be rigorously detected from one approximation matrix
Ak but only from the sequence {Ak}∞k=k0

.
We give a concrete infinite-dimensional example in Appendix A. That exam-

ple is a simple model of electrocardiography. Since it is based on some results
in the field of partial differential equations, we think that it is outside the main
scope of this material so we put it in an appendix.

In practice we can plot the singular values on a logarithmic scale and detect ill-
posedness with incomplete mathematical rigor but with sufficient computational
relevance. Let us take a look at the singular values of the measurement matrices
corresponding to the one-dimensional convolution measurement of Section 2.2.1.
See Figure 3.4.

3.4 Exercises

1. Consider the inverse problem related to the measurement y = Ax in the
cases

(a) A =

[

1 0
0 0

]

, y =

[

1
0

]

, (b) A =





0 1
1 0
13 31



 , y =





1
1
1



 .

Which of Hadamard’s conditions is violated, if any?

2. Assume that the matrix U : R
n → R

n is orthogonal: UUT = I = UTU .
Show that ‖UT y‖ = ‖y‖ for any y ∈ Rn.
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Figure 3.4: Singular values of measurement matrices corresponding to one-dimensional
convolution. The last (smallest) singular value is several orders of magnitude smaller
than the first (largest) singular value, so the condition number of these matrices is big.

3. Let A,U : R
n → R

n be matrices and assume that U is orthogonal. Show
that ‖UA‖ = ‖A‖.

4. If matrices A1 andA2 have the singular values shown below, what conditions
of Hadamard do they violate, if any?

1 64 128
0

1

Singular values of matrix A
1

1 64 128
0

1

Singular values of matrix A
2

5. Download the Matlab routines ex_conv1Ddata_comp.m and ex_conv1D_naive.m

from the course web page to your working directory. Create a new folder
called data. Modify the two routines to study the following problems.

Consider a continuous point spread function p : R→ R given by

p(s) =







1− s for 0 ≤ s ≤ 1,
1 + s for − 1 ≤ s < 0,

0 otherwise.

Choose any function x : R→ R satisfying x(s) = 0 for s < 0 and s > 10.

(a) Create data with ex_conv1Ddata_comp.m and try to reconstruct your
signal with ex_conv1D_naive.m using the same discretization in both
files. Do you see unrealistically good reconstructions? What happens
when the discretization is refined?
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(b) Repeat (a) using finer discretization for generating data. Can you
avoid inverse crime?
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Chapter 4

Regularization methods

We saw in Chapter 3 that recovering x from noisy measurement m = Ax + ε is
difficult for various reasons. In particular, the simple idea of approximating x by
A−1m may fail miserably.

We would like to define a reconstruction function R : R
k → R

n so that the
problem of determining R(m) for a given m would be a well-posed problem in
the sense of Hadamard. First of all, the value R(y) should be well-defined for
every y ∈ R

k; this is the existence requirement (1.1). Furthermore, the function
R : Rk → Rn should be single-valued and continuous, as stated in (1.2) and (1.3),
respectively.

Let us adapt the notions of regularization strategy and admissible choice of
regularization parameter from the book [15] by Andreas Kirsch to our finite-
dimensional setting. We need to assume that Ker(A) = {0}; however, this is not
a serious lack of generality since we can always consider the restriction of A to
(Ker(A))⊥ by working in the linear space of equivalence classes [x+ Ker(A)].

Definition 4.1. Consider the measurement m = Ax+ ε with A a k × n matrix
with Ker(A) = {0}. A family of linear maps Rδ : R

k → R
n parameterized by

0 < δ <∞ is called a regularization strategy if

lim
δ→0
RδAx = x (4.1)

for every x ∈ R
n. Further, a choice of regularization parameter δ = δ(κ) as

function of noise level κ > 0 is called admissible if

δ(κ)→ 0 as κ→ 0, and (4.2)

sup
m

{

‖Rδ(κ)m− x‖ : ‖Ax−m‖ ≤ κ
}

→ 0 as κ→ 0 for every x ∈ R
n.(4.3)

In this chapter we introduce several classes of regularization strategies.

4.1 Truncated singular value decomposition

The problems with Hadamard’s existence and uniqueness conditions (1.1) and
(1.2) can be dealt with using the Moore-Penrose pseudoinverse. Let us look
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at that first before tackling problems with the continuity condition (1.3) using
truncated svd.

4.1.1 Minimum norm solution

Assume given a k × n matrix A. Using svd write A in the form A = UDV T as
explained in Section 3.3. Let r be the largest index for which the corresponding
singular value is positive:

r = max{j | 1 ≤ j ≤ min(k, n), dj > 0}. (4.4)

Remember that the singular values are ordered from largest to smallest as shown
in (3.7). As the definition of index r is essential in the sequel, let us be extra-
specific:

d1 > 0, d2 > 0, · · · dr > 0, dr+1 = 0, · · · dmin(k,n) = 0.

Of course, it is also possible that all singular values are zero. Then r is not defined
and A is the zero matrix.

Let us define the minimum norm solution of matrix equation Ax = y, where
x ∈ R

n and y ∈ R
k and A has size k×n. First of all, a vector F (y) ∈ R

n is called
a least squares solution of equation Ax = y if

‖AF (y) − y‖ = inf
z∈Rn

‖Az − y‖. (4.5)

Furthermore, F (y) is called the minimum norm solution if

‖F (y)‖ = inf{‖z‖ : z is a least squares solution of Ax = y}. (4.6)

The next result gives a method to determine the minimum norm solution.

Theorem 4.1. Let A be a k×n matrix. The minimum norm solution of equation
Ax = y is given by

A+y = V D+UT y,

where

D+ =



























1/d1 0 · · · 0 · · · 0

0 1/d2
...

...
. . .

1/dr

0
...

. . .
...

0 · · · · · · 0



























∈ R
n×k.
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Proof. Denote V = [V1 V2 · · · Vn] and note that the column vectors V1, . . . , Vn

form an orthogonal basis for Rn. We write x ∈ Rn as linear combination
x =

∑n
j=1 αjVj = V α, and our goal is to find such coefficients α1, . . . , αn that x

becomes a minimum norm solution.
Set y′ = UT y ∈ R

k and compute

‖Ax− y‖2 = ‖UDV TV α− Uy′‖2
= ‖Dα− y′‖2

=

r
∑

j=1

(djαj − y′j)2 +

k
∑

j=r+1

(y′j)
2, (4.7)

where we used the orthogonality of U (namely, ‖Uz‖ = ‖z‖ for any vector z ∈ R
k).

Now since dj and y′j are given and fixed, the expression (4.7) attains its minimum
when αj = y′j/dj for j = 1, . . . , r. So any x of the form

x = V





















d−1
1 y′1
...

d−1
r y′r
αr+1

...
αn





















is a least squares solution. The smallest norm ‖x‖ is clearly given by the choice
αj = 0 for r < j ≤ n, so the minimum norm solution is uniquely determined by
the formula α = D+y′.

The matrix A+ is called the pseudoinverse, or the Moore-Penrose inverse of A.
How does the pseudoinverse take care of Hadamard’s existence and uniqueness

conditions (1.1) and (1.2)? First of all, if Coker(A) is nontrivial, then any vector
y ∈ R

k can be written as the sum y = yA + (yA)⊥, where yA ∈ Range(A) and
(yA)⊥ ∈ Coker(A) and yA · (yA)⊥ = 0. Then A+ simply maps (yA)⊥ to zero.
Second, if Ker(A) is nontrivial, then we need to choose the reconstructed vector
from a whole linear subspace of candidates. Using A+ chooses the candidate with
smallest norm.

4.1.2 Regularization by truncation

It remains to discuss Hadamard’s continuity condition (1.3). Recall from Section
3 that we may run into problems if dr is much smaller than d1. In that case even
the use of the pseudoinverse F (m) = A+m = V D+UTm because the diagonal
element d−1

r appearing in D+ is much larger than d−1
1 , resulting in numerical

instability. We can overcome this by using truncated svd. For any δ > 0 define

rδ = min
{

r, max{j | 1 ≤ j ≤ min(k, n), dj > δ}
}

. (4.8)
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Define then

D+
δ =



























1/d1 0 · · · 0 · · · 0

0 1/d2
...

...
. . .

1/drδ

0
...

. . .
...

0 · · · · · · 0



























∈ R
n×k

and define a reconstruction function Fδ by the formula

Fδ(m) = V D+
δ U

Tm. (4.9)

Then all Hadamard’s conditions hold: Fδ : Rk → Rn is a well-defined, single-
valued linear mapping with norm

‖Fδ‖ = ‖V D+
δ U

T ‖ ≤ ‖V ‖‖D+
δ ‖‖UT ‖ = ‖D+

δ ‖ = d−1
rδ
,

implying continuity. Let us be specific here. Of course the linear mapping is
continuous in the mathematical sense since ‖Fδ‖ = d−1

rδ
<∞. However, equation

(3.3) now takes the form

Fδ(m) = V D+
δ U

T (Ax+ ε) = V D+
δ DV

Tx+ V D+
δ U

T ε, (4.10)

where V D+
δ DV

Tx is an approximation to x and the error term can be estimated
as follows:

‖V D+
δ U

T ε‖ ≤ ‖V D+
δ U

T ‖‖ε‖ = ‖D+
δ ‖‖ε‖ = d−1

rδ
‖ε‖. (4.11)

By the ordering (3.7) of singular values we have

d−1
1 ≤ d−1

2 ≤ · · · ≤ d−1
r ,

and by (4.11) the noise gets amplified in the inversion less and less if we choose
smaller rδ (or, equivalently, greater δ).

We see from definition (4.9) and by denoting α := D+
δ U

Tm that the re-
construction is a linear combination of the columns V1, . . . , Vn of matrix V =
[V1 V2 · · · Vn]:

Fδ(m) = V α = α1V1 + · · ·+ αnVn.

Thus the columns V1, . . . , Vn, called singular vectors, are the building blocks of
any reconstruction using truncated svd.

Next we show that the truncated svd method is a regularization strategy with
admissible choice δ(κ) = κ of regularization parameter in the sense of Definition
4.1.
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Theorem 4.2. Let A be a k×n matrix satisfying the assumption Ker(A) = {0},
and let A = UDV T be the singular value decomposition.

Then the family Fδ : R
k → R

n defined by the truncated svd method in (4.9) is
a regularization strategy in the sense of (4.1). Furthermore, the choice δ(κ) = κ
satisfies (4.2) and (4.3).

Proof. Note that the assumption Ker(A) = {0} implies n ≤ k and dn > 0. In
particular, r = n in (4.4).

Since the map Fδ : R
k → R

n is defined by matrix multiplication, it is linear.
To prove (4.1), note that by (4.8) we have rδ → n as δ → 0 because dn > 0 and
r = n. It follows that limδ→0D

+
δ = diagn×k{d−1

1 , . . . , d−1
n } with n rows and k

columns. Take any x ∈ Rn and compute using svd

lim
δ→0

FδAx = lim
δ→0

V D+
δ DV

Tx = V In×nV
Tx = x,

and (4.1) follows.
Condition (4.2) is trivial. It remains to prove

sup
m

{

‖Fκm− x‖ : ‖Ax−m‖ ≤ κ
}

→ 0 as κ→ 0

for every x ∈ R
n. As before, let us denote m′ := UTm and x = V α. Recall the

definition of operator norm for a matrix B:

‖B‖ := sup
z

‖Bz‖
‖z‖ ,

and recall that ‖Bz‖ ≤ ‖B‖‖z‖. Denote

Dn := diagn×n{d1, . . . , dn}
D−1

n := diagn×n{d−1
1 , . . . , d−1

n }
and note that ‖Dn‖ = d1 and ‖D−1

n ‖ = d−1
n . Estimate now

‖Fκm− x‖ = ‖V D+
κ U

Tm− V α‖
= ‖D+

κ m
′ − α‖

= ‖D−1
n DnD

+
κ m

′ −D−1
n Dnα‖

≤ d−1
n ‖DnD

+
κ m

′ −Dnα‖.
In the case κ < dn we have DnD

+
κ = In×n and thus

‖Fκm− x‖2 ≤ d−2
n

n
∑

j=1

(djαj −m′)2

≤ d−2
n





n
∑

j=1

(djαj −m′)2 +

k
∑

j=n+1

(m′)2





= d−2
n ‖Dα−m′‖2

= d−2
n ‖UDV TV α− Um′‖2

= d−2
n ‖Ax−m‖2.
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Then ‖Ax−m‖ ≤ κ implies ‖Fκm− x‖ ≤ d−1
n κ, and the proof is complete.

Let us return to the one-dimensional deconvolution problem. In Figure 4.1
we show how the reconstruction builds up from the singular vectors one by one.

4.2 Tikhonov regularization

4.2.1 Definition via minimization

The Tikhonov regularized solution of equation m = Ax+ ε is the vector Tδ(m) ∈
R

n that minimizes the expression

‖ATδ(m)−m‖2 + δ‖Tδ(m)‖2,

where δ > 0 is called a regularization parameter. We denote

Tδ(m) = arg min
z∈Rn

{

‖Az −m‖2 + δ‖z‖2
}

. (4.12)

Tikhonov regularization can be understood as a balance between two require-
ments:

(i) Tδ(m) should give a small residual ATδ(m)−m,

(ii) Tδ(m) should be small in L2 norm.

The regularization parameter δ > 0 can be used to “tune” the balance.
Note that in inverse problems there are typically infinitely many choices of

Tδ(m) satisfying (i), and one of the roles of (ii) is to make the solution unique.

Theorem 4.3. Let A be a k × n matrix. The Tikhonov regularized solution for
equation m = Ax+ ε is given by

Tδ(m) = VD+
δ U

Tm, (4.13)

where A = UDV T is the singular value decomposition, and

D+
δ = diag

(

d1

d2
1 + δ

, . . . ,
dmin(k,n)

d2
min(k,n) + δ

)

∈ R
n×k. (4.14)

Proof. Write Tδ(m) ∈ Rn as linear combination of column vectors of matrix V :
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Figure 4.1: Left column: singular vectors 1–9 related to the one-dimensional convolution
matrix. Right column: Reconstructions using all singular vectors up to the row number
in the truncated svd. The percentages shown are relative errors of reconstructions.

34



Tδ(m) =
∑n

j=1 αjVj = V α. Set m′ = UTm and compute

‖ATδ(m)−m‖2 + δ‖Tδ(m)‖2
= ‖UDV TV α− UUTm‖2 + δ‖V α‖2
= ‖Dα−m′‖2 + δ‖α‖2

=
r
∑

j=1

(djαj −m′
j)

2 +
k
∑

j=r+1

(m′
j)

2 + δ
n
∑

j=1

α2
j

=
r
∑

j=1

(

d2
j + δ

)

(

α2
j − 2

djm
′
j

d2
j + δ

αj

)

+ δ
n
∑

j=r+1

α2
j +

k
∑

j=1

(m′
j)

2 (4.15)

=
r
∑

j=1

(

d2
j + δ

)

(

αj −
djm

′
j

d2
j + δ

)2

+ δ
n
∑

j=r+1

α2
j (4.16)

−
r
∑

j=1

(djm
′
j)

2

d2
j + δ

+
k
∑

j=1

(m′
j)

2,

where completing the square in the leftmost term in (4.15) yields (4.16). Our
task is to choose such values for the parameters α1, . . . , αn that (4.16) attains its
minimum. Clearly the correct choice is

αj =







dj

d2
j + δ

m′
j , 1 ≤ j ≤ r,

0 , r + 1 ≤ j ≤ n,

or in short α = D+
δ m

′.

Let us apply Tikhonov regularization to our basic test problem of one-dimensional
deconvolution. In Figure 4.2 we see the Tikhonov regularized solutions corre-
sponding to three different choices of regularization parameter, namely δ = 10
and δ = 0.1 and δ = 0.001. Here the noise level is 1% in all three reconstructions.
The result of increasing the noise level to 10% can be seen in Figure 4.3: it seems
that the smaller regularization parameter δ, the more robust the Tikhonov regu-
larized solution is with respect to measurement noise. Let us make one more test
to find evidence for this statement: namely, we recompute the result shown in
Figure 4.2 ten times with noise level 1%, but taking a different realization of our
random error vector each time. As we see in Figure 4.4, the variance is indeed
greater in reconstructions using smaller values of δ.

4.2.2 Choosing δ: the Morozov discrepancy principle

How to choose the regularization parameter δ > 0 optimally? This is a difficult
question and in general unsolved.

There are some methods for choosing δ, for example Morozov’s discrepancy
principle: If we have an estimate on the magnitude of error in the data, then
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Figure 4.2: Tikhonov regularized solutions. Left: δ = 10. Middle: δ = 0.1. Right:
δ = 0.001. Here the noise level is 1% in all three reconstructions.
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Figure 4.3: Tikhonov regularized solutions. Left: δ = 10. Middle: δ = 0.1. Right:
δ = 0.001. Here the noise level is 10% in all three reconstructions. Compare to Figure
4.2.
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Figure 4.4: Tikhonov regularized solutions with various realizations of random noise and
three different choices of the regularization parameter δ. Here the noise level is 1% in all
reconstructions. Note how the noise is amplified more when δ is smaller. Compare to
Figures 4.2 and 4.3.
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any solution that produces a measurement with error of the same magnitude is
acceptable.

For instance, assume that m = Ax + ε and that we know the size of noise:
‖ε‖ = κ > 0. Then Tδ(m) is an acceptable reconstruction if

‖ATδ(m)−m‖ ≤ κ.
For example, if the elements of the noise vector ε ∈ R

k satisfy εj ∼ N(0, σ2),
then we can take κ =

√
kσ since the expectation of the size is E(‖ε‖) =

√
kσ.

The idea of Morozov discrepancy principle is to choose δ > 0 such that

‖ATδ(m)−m‖ = κ.

Theorem 4.4. Morozov discrepancy principle gives a unique choice for δ > 0 if
and only if κ satisfies

‖Pm‖ ≤ κ ≤ ‖m‖,
where P is orthogonal projection to the subspace Coker(A).

Proof. From the proof of Theorem 4.3 we find the equation

ATδ(m) = UDV TVD+
δ U

Tm = UDD+
δ m

′,

so we have

‖ATδ(m)−m‖2 = ‖DD+
δ m

′ −m′‖2

=

min(k,n)
∑

j=1

(

d2
j

d2
j + δ

− 1

)2

(m′
j)

2 +

k
∑

j=min(k,n)+1

(m′
j)

2

=
r
∑

j=1

(

δ

d2
j + δ

)2

(m′
j)

2 +
k
∑

j=r+1

(m′
j)

2.

From this expression we see that the mapping

δ 7→ ‖ATδ(m)−m‖2

is monotonically increasing and thus, noting the formal identity
∑k

j=r+1(m
′
j)

2 =

‖AT0(m)−m‖2 we get

k
∑

j=r+1

(m′
j)

2 ≤ ‖ATδ(m)−m‖2 ≤ lim
δ→∞

‖ATδ(m)−m‖2 =

k
∑

j=1

(m′
j)

2

and the claim follows from orthogonality of U .

Numerical implementation of Morozov’s method is now simple. Just find the
unique zero of the function

f(δ) =

r
∑

j=1

(

δ

d2
j + δ

)2

(m′
j)

2 +

k
∑

j=r+1

(m′
j)

2 − κ2. (4.17)

Let us try Morozov’s method in practice.
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Figure 4.5: Demonstration of Morozov’s discrepancy principle with noise level 1%. Left:
Plot of function f(δ) defined in (4.17). Note that as the theory predicts, the function f
is strictly increasing. Right: Tikhonov regularized reconstruction using δ = 0.0369.

0 0.799 1
−10

−5

0

5

0 1/4 1/2 3/4 7/8 1

0

1

2
Relative error 57%

Figure 4.6: Demonstration of Morozov’s discrepancy principle with noise level 10%. Left:
Plot of function f(δ) defined in (4.17). Right: Tikhonov regularized reconstruction using
δ = 0.799.
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4.2.3 Generalized Tikhonov regularization

Sometimes we have a priori information about the solution of the inverse problem.
For example, we may know that x is close to a signal x∗ ∈ R

n; then we minimize

Tδ(m) = arg min
z∈Rn

{

‖Az −m‖2 + δ‖z − x∗‖2
}

. (4.18)

Another typical situation is that x is known to be smooth. Then we minimize

Tδ(m) = arg min
z∈Rn

{

‖Az −m‖2 + δ‖Lz‖2
}

. (4.19)

or
Tδ(m) = arg min

z∈Rn

{

‖Az −m‖2 + δ‖L(z − x∗)‖2
}

. (4.20)

where L is a discretized differential operator.
For example in dimension 1, we can discretize the derivative of the continuum

signal by difference quotient

dX
ds

(sj) ≈
X (sj+1)−X (sj)

∆s
=
xj+1 − xj

∆s
.

This leads to the discrete differentiation matrix

L =
1

∆s

























−1 1 0 0 0 · · · 0
0 −1 1 0 0 · · · 0
0 0 −1 1 0 · · · 0
...

. . .
...

. . .

0 · · · 0 −1 1 0
0 · · · 0 0 −1 1

























(4.21)

4.2.4 Normal equations and stacked form

Consider the quadratic functional Qδ : R
n → R defined by

Qδ(x) = ‖Ax−m‖2 + δ‖x‖2.

It can be proven that Qδ has a unique minimum for any δ > 0. The minimizer
Tδ(m) (i.e. the Tikhonov regularized solution of m = Ax+ ε) satisfies

0 =
d

dt

{

‖A(Tδ(m) + tw)−m‖2 + δ‖Tδ(m) + tw‖2
}

∣

∣

∣

∣

t=0

for any w ∈ R
n.
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Compute

d

dt
‖A(Tδ(m) + tw)−m‖2

∣

∣

∣

∣

t=0

=
d

dt
〈ATδ(m) + tAw −m,ATδ(m) + tAw −m〉

∣

∣

∣

∣

t=0

=
d

dt

{

‖ATδ(m)‖2 + 2t〈ATδ(m), Aw〉 + t2‖Aw‖2

− 2t〈m,Aw〉 − 2〈ATδ(m),m〉+ ‖m‖2
}

∣

∣

∣

∣

t=0

=2〈ATδ(m), Aw〉 − 2〈m,Aw〉,

and

d

dt
δ〈Tδ(m) + tw, Tδ(m) + tw〉

∣

∣

∣

∣

t=0

=δ
d

dt

{

‖Tδ(m)‖2 + 2t〈Tδ(m), w〉 + t2‖w‖2
}

∣

∣

∣

∣

t=0

=2δ〈Tδ(m), w〉.

So we get 〈ATδ(m)−m,Aw〉+ δ〈Tδ(m), w〉 = 0, and by taking transpose

〈ATATδ(m)−ATm,w〉+ δ〈Tδ(m), w〉 = 0,

so finally we get the variational form

〈(ATA+ δI)Tδ(m)−ATm,w〉 = 0. (4.22)

Since (4.22) holds for any nonzero w ∈ Rn, we necessarily have (ATA+δI)Tδ(m) =
ATm. So the Tikhonov regularized solution Tδ(m) satisfies

Tδ(m) = (ATA+ δI)−1ATm, (4.23)

and actually (4.23) can be used for computing Tδ(m) defined in the basic situation
(4.12).

In the generalized case of (4.19) we get by similar computation

Tδ(m) = (ATA+ δLTL)−1ATm. (4.24)

Next we will derive a computationally attractive stacked form version of (4.13).
We rethink problem (4.13) so that we have two measurements on x that we
minimize simultaneously in the least squares sense. Namely, we consider both
equations Ax = m and Lx = 0 as independent measurements of the same object
x, where A ∈ R

k×n and L ∈ R
ℓ×n. Now we stack the matrices and right hand

sides so that the regularization parameter δ > 0 is involved correctly:
[

A√
δL

]

x =

[

m
0

]

. (4.25)
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Figure 4.7: Generalized Tikhonov regularized solutions with matrix L as in (4.21). Left:
δ = 1. Middle: δ = 10−3. Right: δ = 10−6. Here the noise level is 1% in all three
reconstructions. Compare to Figure 4.2.

We write (4.25) as Ãx = m̃ and solve for Tδ(m) defined in (4.24) in Matlab by

x = Ã\m̃, (4.26)

where \ stands for least squares solution. This is a good method for medium-
dimensional inverse problems, where n and k are of the order ∼ 103. Formula
(4.26) is applicable to higher-dimensional problems than formula (4.13) since
there is no need to compute the svd for (4.26).

Why would (4.26) be equivalent to (4.24)? In general, a computation similar
to the above shows that a vector z0, defined as the minimizer

z0 = arg min
z
‖Bz − b‖2,

satisfies the normal equations BTBz0 = BT b. In this case the minimizing z0 is
called the least squares solution to equation Bz = b. In the context of our stacked
form formalism, the least squares solution of (4.25) satisfies the normal equations

ÃT Ãx = ÃT m̃.

But

ÃT Ã =
[

AT
√
δLT

]

[

A√
δL

]

= ATA+ δLTL

and

ÃT m̃ =
[

AT
√
δLT

]

[

m
0

]

= ATm,

so it follows that (ATA+ δLTL)x = ATm.
Let us try out generalized Tikhonov regularization on our one-dimensional

deconvolution problem.
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Figure 4.8: Generalized Tikhonov regularized solutions with matrix L as in (4.21). Left:
δ = 10. Middle: δ = 0.1. Right: δ = 0.001. Here the noise level is 10% in all three
reconstructions. Compare to Figures 4.3 and 4.7.
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Figure 4.9: Generalized Tikhonov regularized solutions with matrix L as in (4.21) and
various realizations of random noise. Left: δ = 10. Middle: δ = 0.1. Right: δ = 0.001.
Here the noise level is 1% in all reconstructions. Compare to Figures 4.4, 4.7 and 4.8.
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Figure 4.10: Using L-curve to find regularization parameter. Left: L-curve shown in
blue. Right: reconstruction using the best value for δ.

4.2.5 Choosing δ: the L-curve method

In Section 4.2.2 we discussed Morozov’s method for choosing the regularization
parameter δ > 0 for Tikhonov regularization. As the method of Morozov does not
apply to the generalized regularization formulas (4.18)–(4.20), we need to discuss
alternative approaches. One possibility is to use the so-called L-curve method.

The idea of the L-curve method is to choose a collection of candidates for
regularization parameter:

0 < δ1 < δ2 < · · · < δM <∞,

and compute Tδj
(m) for each 1 ≤ j ≤M . Then the points

(log ‖ATδ(m)−m‖, log ‖LTδ(m)‖) ∈ R
2

are plotted in the plane, forming approximately a smooth curve. This curve has
typically the shape of the letter L with smooth corner. The optimal value of δ is
thought to be found as near the corner as possible.

Let us consider the generalized Tikhonov regularization of the form (4.19)
with L given by (4.21). See Figure 4.10 for the result. For more information
about the L-curve method, see the book by Hansen [9] and references therein.

4.2.6 Large-scale computation: matrix-free iterative method

The formulation (4.24) of Tikhonov regularization is remarkable because it allows
matrix-free implementation. Namely, assume that we have available computa-
tional routines called Amult and Lmult that take an arbitrary vector z ∈ R

n as
argument and return

Amult(z) = Az ∈ R
k, Lmult(z) = Lz ∈ R

k′

,
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respectively. Further, since the transposes AT : R
k → R

n and LT : R
k′ →

Rn appear in (4.24) as well, we need computational routines called ATmult and
LTmult that take vectors v ∈ R

k and w ∈ R
k′

as arguments and return

ATmult(v) = AT v ∈ R
n, LTmult(w) = LTw ∈ R

n.

Now we can solve the linear equation (ATA+ δLTL)x = ATm without actually
constructing any of the matrices A,AT , L or LT ! The trick is to use an iterative
solution strategy, such as the conjugate gradient method.

4.3 Total variation regularization

Rudin, Osher and Fatemi introduced in 1992 the following idea: instead of mini-
mizing

‖Ax−m‖22 + δ‖Lx‖22 (4.27)

let us minimize
‖Ax−m‖22 + δ‖Lx‖1. (4.28)

Recall that ‖z‖22 = |z1|2 + · · · + |zn|2 and ‖z‖1 = |z1|+ · · ·+ |zn|.
The idea is that (4.28) should allow occasional larger jumps in the reconstruc-

tion, leading to piecewise smoothness instead of overall smoothness. It turns out
that (4.28) really is a powerful method, but numerical minimization is more dif-
ficult than in the case of Tikhonov regularization; this is because the function to
be minimized is no more quadratic (and actually not even differentiable).

We will take a look at two different ways to compute total variation regularized
solutions.

4.3.1 Quadratic programming

Consider applying total variation regularization for a discretized one-dimensional
continuum inverse problem. We want to minimize

‖Ax−m‖22 + δ

n
∑

j=0

|(Lx)j |, (4.29)

where (Lx)j = xj+1 − xj for j = 0, . . . , n with the convention x0 = 0 and
xn+1 = 0. These boundary conditions lead to slightly different form for the L
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matrix compared to (4.21):

L =
1

∆s

































1 0 0 0 0 · · · 0
−1 1 0 0 0 · · · 0

0 −1 1 0 0 · · · 0
0 0 −1 1 0 · · · 0
...

. . .
...

. . .

0 · · · 0 −1 1 0
0 · · · 0 0 −1 1
0 · · · 0 0 0 −1

































. (4.30)

Write Lx in the form
V+ − V− = Lx,

where V± are nonnegative vectors: V± ∈ R
n+1
+ , or (V±)j ≥ 0 for all j = 1, . . . , n+

1. Now minimizing (4.29) is equivalent to minimizing

‖Ax‖22 − 2mTAx+ δ1TV+ + δ1TV−,

where 1 =
[

1 1 · · · 1
]T ∈ Rn+1 and the minimization is taken over vectors

y =





x
V+

V−



 , where

x ∈ Rn

V+ ∈ R
n+1
+

V− ∈ R
n+1
+

.

Write now

H =





2ATA 0 0
0 0 0
0 0 0



 , f =





−2ATm
δ1
δ1



 .

Then we deal with the standard form quadratic problem

arg min
y

{

1

2
yTHy + fTy

}

(4.31)

with the constraints

L







y1
...
yn






=







yn+1
...

y2n+1






−







y2n+2
...

y3n+2






and (4.32)

yj ≥ 0 for j = n+ 1, . . . , 3n + 2.

Several software packages (such as quadprog.m routine in Matlab’s Optimization
toolbox) exist that can deal with a problem of the form (4.31) with constraints
of type (4.32).

The two-dimensional case is slightly more complicated since we need to dis-
cretize ∇X with respect to two directions. One possibility is to write horizontal
and vertical difference quotients in the form of two matrices LH and LV .

45



0 1/4 1/2 3/4 7/8 1

0

1

2

0 1/4 1/2 3/4 7/8 1 0 1/4 1/2 3/4 7/8 1

Relative error 76% Relative error 14% Relative error 19%

Figure 4.11: Total variation regularized solutions with matrix L as in (4.21). Left: δ = 10.
Middle: δ = 0.1. Right: δ = 10−4. Here the noise level is 1% in all three reconstructions.
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Figure 4.12: Total variation regularized solutions with matrix L as in (4.21). Left:
δ = 10. Middle: δ = 0.1. Right: δ = 10−4. Here the noise level is 10% in all three
reconstructions. Compare to Figure 4.11.
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Figure 4.13: Total variation regularized solutions with matrix L as in (4.21). Left:
δ = 10. Middle: δ = 0.1. Right: δ = 10−4. Here the noise level is 1% and we repeated
the computation with 10 different realizations of noise. Compare to the corresponding
computation using Tikhonov regularization in Figure 4.9.
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4.3.2 Large-scale computation: Barzilai-Borwein method

Consider again applying total variation regularization for a discretized one-dimensional
continuum inverse problem. Our aim is to minimize

f(x) = ‖Ax−m‖22 + δ‖Lx‖1

= ‖Ax−m‖22 + δ

n−1
∑

j=1

|xi − xj |,

but since f is not continuously differentiable we cannot apply any derivative-based
optimization method.

Let us replace the absolute value function |t| by an approximation:

|t|β :=
√

t2 + β,

where β > 0 is small. (Another possible choice is |t|β = 1
β log(cosh(βt)).)

Then the objective function

fβ(x) = ‖Ax−m‖22 + δ

n−1
∑

j=1

|xi − xj |β

is continuously differentiable and we can apply gradient-based optimization meth-
ods.

The steepest descent method was introduced by Cauchy in 1847. It is an
iterative method where the initial guess x(1) is just chosen somehow (e.g. x(1) = 0)
and the next iterates are found inductively by

x(ℓ+1) = x(ℓ) − αℓ∇f(x(ℓ)),

where the step size αℓ is determined from

αℓ = arg min
α
f(x(ℓ) − α∇f(x(ℓ))).

The steepest descent method is known to be slow and badly affected by ill-
conditioning.

Barzilai and Borwein introduced in 1988 the following optimization strategy
which differs from the steepest descent method only by the choice of steplength:

x(ℓ+1) = x(ℓ) − αℓ∇f(x(ℓ)),

where αℓ is given by setting yℓ := x(ℓ+1) − x(ℓ) and gℓ := ∇f(x(ℓ+1)) − ∇f(x(ℓ))
and

αℓ =
yT

ℓ yℓ

yT
ℓ gℓ

.

This method converges faster and is less affected by ill-conditioning than the
steepest descent method. (Especially for quadratic f) There are some practical
problems with the method of Barzilai and Borwein:
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(i) How to choose the first steplength α1?

(ii) The objective function is not guaranteed to get smaller with each step.
What to do in the case it becomes bigger?

The quick-and-dirty solution to (i) is just choosing α1 to be small, for example
α1 = 1

10 000 . Another practical way to choose α1 by line minimization.
One simple way to deal with (ii) is to check if f increases, and if so, half the

steplength. However, this is not the best possible way to ensure the convergence
of the method, since just the increasing steps have turned out to be essential
for the local convergence properties of the Barzilai-Borwein method. It is often
advisable to just let the method run in spite of occasionally increasing objective
function values.

Strategies to guarantee the global convergence of the Barzilai-Borwein method
can be found for instance in papers of Dai & Fletcher (2003) and Raydan (1997).
Constrained optimization, such as enforcing nonnegativity, using Barzilai-Borwein
method is discussed in [6, 29].

Note that the storage need of the Barzilai-Borwein method method is of the
order n instead of n2 typical for many other methods. If x is a large M ×N size
image, then n2 = M2N2 is too large for most computer memories!

4.4 Truncated iterative solvers

This topic is not discussed in the 2008 implementation of the course.

4.5 Exercises

1. Show that the matrix ATA + δI is always invertible when δ > 0 and A is
an arbitrary k × n matrix. Hint: use svd.

2. Consider regularized solution Tδ(m) of equation m = Ax+ε using truncated
SVD with truncation index p(δ) for δ > 0. Assume that the noise level is
κ = ‖ε‖. Show that the discrepancy condition ‖ATδ(m) −m‖ ≤ κ can be
written in the form

m
∑

j=p(δ)+1

(y′j)
2 ≤ κ2.

(This is the equivalent of Morozov’s discrepancy condition for truncated
SVD.)

3. Show that the variational form corresponding to the minimization problem

Tδ(m) = arg min
z∈Rn
{‖Az −m‖2 + δ‖Lz‖2}

is given by
〈

(ATA+ δLTL)Tδ(m)−ATm,w
〉

= 0 for all w ∈ R
n.
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4. Write the generalized Tikhonov problem

Tδ(m) = arg min
z∈Rn
{‖Az −m‖2 + δ‖L(z − x⋆)‖2}

in stacked form.
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Chapter 5

Statistical inversion

5.1 Introduction to random variables

One way to think about a real-valued random variable X is through drawing
samples. We can take a sample x(1) ∈ R (also called realization) of X. The
probabilistic nature of X is described by its probability density function pX :
R→ R satisfying the following properties:

pX(x) ≥ 0 for all x ∈ R, (5.1)
∫ ∞

−∞
pX(x)dx = 1. (5.2)

The probability for the sample x(1) to belong to the interval [a, b] ⊂ R is given
by the integral

Pr(a ≤ x(1) ≤ b) =

∫ b

a
pX(x)dx.

Note that (5.2) ensures that the probability for x(1) to belong to R is one. If we
draw a series {x(1), x(2), x(3), . . . , x(N)} of samples of X, then the histogram of
the samples is close to the graph of pX when N is large. See Figure 5.1.

We only consider continuously differentiable probability density functions in
this course. For more general treatment involving σ-algebras see [23].

Another useful function related to the random variable X is the cumulative
distribution function PX : R→ [0, 1] defined by

PX(x) =

∫ x

−∞
pX(t)dt. (5.3)

Note that limx→−∞ PX(x) = 0 and limx→∞ PX(x) = 1 and that PX is a monoton-
ically increasing function. The cumulative distribution function is handy when
drawing samples from real-valued random variables. Namely, one can draw a sam-
ple r(1) from the uniform distribution on the interval [0, 1] (by Matlab function
rand, for instance) and then set

x(1) := P−1
X (r(1)). (5.4)
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Figure 5.1: Left: Gaussian normal distribution with σ = 1, or more precisely pX(x) =
(2π)−1/2 exp(− 1

2
x2). Middle: histogram of 1000 samples drawn using the Matlab func-

tion randn. Right: histogram of 10000 samples.

A series {x(1), x(2), x(3), . . . , x(N)} of samples of X is then produced by

{P−1
X (r(1)), P−1

X (r(2)), P−1
X (r(3)), . . . , P−1

X (r(N))},

where sampling r(j) is trivial.
The Bayesian approach to solving inverse problems is based on conditional

probabilities. Let us consider a joint probability density pXM : R
2 → R of two

R-valued random variables X and M . We must have

pXM (x,m) ≥ 0 for all x,m ∈ R, (5.5)
∫ ∞

−∞

∫ ∞

−∞
pXM (x,m)dxdm = 1. (5.6)

Now the probability that a sampled pair (x(1),m(1)) belongs to the rectangle
[a, b]× [c, d] is given by the integral

Pr(a ≤ x(1) ≤ b and c ≤ m(1) ≤ d) =

∫ b

a

∫ d

c
pXM (x,m)dxdm.

Now we can define the marginal distributions of X and M by

pX(x) =

∫ ∞

−∞
pXM (x,m)dm, pM (m) =

∫ ∞

−∞
pXM (x,m)dx,

respectively. Furthermore, the conditional probability of X given a fixed value of
M is defined by

pX|M (x|m) =
pXM (x,m)

pM(m)
. (5.7)

It is easy to check that
∫ ∞

−∞
pX|M (x|m)dx = 1.
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Similarly we define the conditional probability of M given a fixed value of X by

pM |X(m|x) =
pXM (x,m)

pX(x)
. (5.8)

A combination of (5.7) and (5.8) yields the Bayes formula

pX|M(x|m) =
pX(x) pM |X(m|x)

pM(m)
. (5.9)

5.2 Bayesian framework

In statistical inversion we consider the measurement model

M = AX + ε,

where ε is as before and now M and X are considered random variables taking
values in Rk and Rn, respectively. Using Bayes formula (5.9) we can define the
posterior distribution

pX|M(x|m) ∼ pX(x) pM |X(m|x), (5.10)

where ∼ means that we ignore normalization constants.
The density pM |X(m|x) in (5.10) is called likelihood distribution and is related

to data misfit. In the case of Gaussian noise treated in this course, the likelihood
distribution takes the form

pM |X(m|x) ∼ exp(− 1

2σ2
‖Ax−m‖22). (5.11)

We consider pM |X(m|x) as a function of both x and m. For a fixed x the density
pM |X(m|x) specifies a high probability to a measurement m that could come from
x via Ax and a low probability for measurements m far away from Ax. On the
other hand, for a fixed m the density pM |X(m|x) assigns high probability only to
vectors x for which Ax is close to m.

The role of the prior distribution pX(x) in (5.10) is to code all a priori in-
formation we have on the unknown X in the form of a probability density. The
function pX : Rn → R should assign high probability to vectors x ∈ Rn that are
probable in light of a priori information, and low probability to atypical vectors
x. Constructing pX(x) in a computationally effective way is often the central
difficulty in statistical inversion.

The posterior distribution pX|M(x|m) defined in (5.10) is considered to be the
complete solution of the inverse problem

Given a realization of M, find information about X.

The probabilities encoded in pX|M (x|m) are difficult to visualize, however, since
x ranges in n-dimensional space. This is why we need to compute some point
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estimate (and possibly confidence intervals) from the posterior density. Popular
point estimates include the Maximum a posteriori estimate

arg max
x∈Rn

pX|M (x|m), (5.12)

or the vector R
n giving the largest probability, and the conditional mean estimate

∫

Rn

x pX|M(x|m) dx. (5.13)

Numerical computation of (5.12) is an optimization problem, while the evaluation
of (5.13) requires integration in n-dimensional space. In Section 5.3 we will discuss
sampling methods for the evaluation of (5.13).

Let us remark that if the matrix A is well-conditioned then one can compute
the vector x that gives the maximum value for pM |X(m|x) with a given and fixed
m. This is called the maximum likelihood (ml) method. In inverse problems the
matrix A is ill-conditioned, and there is a large number (possibly even a full linear
subspace) of vectors x that give essentially the same value for pM |X(m|x). So the
prior distribution represents information that is necessary for stable solution of
the inverse problem because the measurement information coded in the likelihood
distribution is not enough to specify x uniquely and robustly. In ideal situations
the prior distribution contains orthogonal information to the likelihood in the
sense that the product pX(x) pM |X(m|x) describes a nicely centered probability
mass even though pM |X(m|x) does not.

5.3 Monte Carlo Markov chain methods

The idea is to compute the conditional mean estimate approximately using the
formula

∫

Rn

x pX|M (x|m) dx ≈ 1

N

N
∑

ℓ=1

x(ℓ), (5.14)

where the sequence {x(1), x(2), x(3), . . . , x(N)} is distributed according to the pos-
terior density pX|M (x|m). Such sequences can be constructed using Monte Carlo
Markov chain methods. The term Markov chain is related to the construction of
the sequence; it means roughly that the generation of a new member x(N+1) for
the sequence only depends on the previous member x(N).

The initial guess x(1) is often far away from the conditional mean, and some
of the first sample vectors need to be discarded. This leads to choosing some
1 < N0 << N and replacing (5.14) by

∫

Rn

x pX|M(x|m) dx ≈ 1

N −N0

N
∑

ℓ=N0+1

x(ℓ). (5.15)

The discarded part {x(1), x(2), x(3), . . . , x(N0)} is called the burn-in period.
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We will discuss in Sections 5.3.2 and 5.3.3 two different MCMC methods. For
more detailed information about MCMC methods and their convergence proper-
ties see e.g. [8, 11, 7, 24, 26, 21].

5.3.1 Markov chains

5.3.2 Gibbs sampler

The so-called single component Gibbs sampler proceeds as follows:

1. Fix the initial draw x(1) = (x
(1)
1 , . . . , x

(1)
n ) and set ℓ = 2.

2. Generate x(ℓ) a single variable at a time:

Draw x
(ℓ)
1 from the density t 7→ p(t, x

(ℓ−1)
2 , . . . , x

(ℓ−1)
n |m),

draw x
(ℓ)
2 from the density t 7→ p(x

(ℓ)
1 , t, x

(ℓ−1)
3 , . . . , x

(ℓ−1)
n |m),

...

draw x
(ℓ)
n from the density t 7→ p(x

(ℓ)
1 , . . . , x

(ℓ)
n−1, t|m).

3. Set ℓ← ℓ+ 1 and go to (ii).

Drawing of samples in step 2 is simple to implement via (5.4). One needs to
evaluate the cumulative distribution function of the density using numerical inte-
gration (and making sure that the grid is fine enough; too coarse grid is a typical
source of errors). Note that it does not matter if the density integrates to 1 or
some other positive value I > 0. If I 6= 1 then (5.4) is just modified as follows:

x
(ℓ)
j := P−1

X (I · rand),

where the Matlab command rand is sampled from the uniform density in [0, 1].
The determination of the so-called full conditional densities of a single com-

ponent xk while the remaining ones are fixed can in some cases be carried out
analytically, at least with respect to some variables, but since they are functions
of a single variable only, it is relatively straightforward to approximate the asso-
ciated distribution functions non-parametrically and then employ the well know
golden rule to draw the samples. Compared to the Metropolis-Hastings method,
the virtue of the Gibbs sampler is the absence of the problems related to the
choice of the proposal distribution as well as questions related to the acceptance
rule. The significant drawback is that it becomes easily slow when the number of
the components is large as it is in real X-ray tomography problems.

Let us consider a deconvolution problem in 1-D: Given a convolution operator
A and data m = Ax + ε, the task is to find the original signal x. The noise ε
is assumed to be white Gaussian noise with noise level σ. This model yields the
likelihood

pM |X(m|x) ∼ exp(− 1

2σ2
‖Ax−m‖22).
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In addition, it is known that the components xj of the original signal are confined
to the interval [0, 2]. This gives the prior distribution

pX(x) ∼ χ[0,2](x) :=

n
∏

j=1

χ[0,2](xj).

In consequence, the posterior distribution is

pX|M (x|m) ∼ exp(− 1

2σ2
‖Ax−m‖22)χ[0,2](x).

In order to use Gibbs sampling, we need to be able to sample from the dis-
tribution

t 7→ pX|M (x̃(ℓ,j)(t)), j ∈ {1, 2, . . . , n}, (5.16)

where
x̃(ℓ,j)(t) = (x

(ℓ)
1 . . . . , x

(ℓ)
j−1, t, x

(ℓ−1)
j+1 , . . . , x(ℓ−1)

n )T .

Distribution (5.16) can be written as

pX|M(x̃(ℓ,j)(t)) = C exp(− 1

2σ2
‖a(j)t− m̃(ℓ,j)‖22)χ[0,2](t),

where
m̃(ℓ,j) = m−Ax̃(ℓ,j)(0)

and a(j) denotes the j:th column of A. We use Householder transformation to
obtain a simple formula for this distribution. Let e(1) = (1, 0, . . . , 0)T and

Q(j) = I − 2
(a(j) − ‖a(j)‖e(1))(a(j) − ‖a(j)‖e(1))T
(a(j) − ‖a(j)‖e(1))T (a(j) − ‖a(j)‖e(1)) ,

i.e., the matrix Q(j) is chosen in such a way that Q(j)a(j) = ‖a(j)‖2e(1). Since the
matrix Q(j) is orthogonal, we have

pX|M(x̃(ℓ,j)(t)) ∼ exp

(

− 1

2σ2
‖Q(j)(a(j)t− m̃(ℓ,j))‖22

)

χ[0,2](t)

∼ exp

(

−‖a
(j)‖22
2σ2

‖t− µ(ℓ,j)‖22

)

χ[0,2](t),

(5.17)

where

µ(ℓ,j) =
e(1)

T
Q(j)m̃(ℓ,j)

‖a(j)‖ .

Samples from distribution (5.17) can be obtained using the inverse cdf-method.
Let us denote the cumulative distribution function of the standard normal ran-
dom variable by Φ. The distribution (5.17) is a truncated normal distribution,
and its cumulative distribution function is

Fℓ,j(t) =















0, t < 0,
Φ((t−µ(ℓ,j))‖a(j)‖2/σ)−Φ(−µ(ℓ,j)‖a(j)‖2/σ)
Φ((2−µ(ℓ,j))‖a(j)‖2/σ)−Φ(−µ(ℓ,j)‖a(j)‖2/σ)

, 0 ≤ t ≤ 2,

1, t > 2.
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The inverse of Fℓ,j can be written as

F−1
ℓ,j (z) =

σ

‖a(j)‖2
Φ−1

{[

Φ
(

(2− µ(ℓ,j))
‖a(j)‖2
σ

)

− Φ
(

−µ(ℓ,j)‖a(j)‖2
σ

)

]

z

+Φ
(

−µ(ℓ,j)‖a(j)‖2
σ

)

}

+ µ(ℓ,j). (5.18)

Now, when we draw z from a uniform distribution on [0, 1], F−1
ℓ,j (z) will be a

sample from (5.16). However, (5.18) is not always applicable: The mean µ(ℓ,j)

can be far away from the interval [0, 2], and, in such a case,

Φ((2− µ(ℓ,j))
‖a(j)‖2
σ

) and Φ(−µ(ℓ,j)‖a(j)‖2
σ

)

are numerically equal. In this example, we encounter this problem. As a result,
(5.18) fails to map x to t. This saturation problem with Φ can be circumvented
using the tabulated form of inverse cdf method. Even with the tabulated form,
one has to take measures in order to avoid problems caused by floating point
computations.

In fact, Gibbs sampler is not that effective in the framework of this example.
First, we need to sample the components of x from distributions that are not
trivial. Second, the components of x are not independent. As a result, the
sampling distribution has to be numerically computed for each pair (ℓ, j), which
requires a large number of floating point operations. Nevertheless, Gibbs sampler
is well suited for some problems: For example, it is possible that only conditional
probabilites are known. In such a case, Gibbs sampler is a natural choice for
exploring the posterior.

5.3.3 Metropolis-Hastings method

In the Metropolis-Hastings algorithm the states of the Markov chain are gener-
ated as follows: Given the state x(ℓ) of the chain, a candidate xc for the next
state is drawn from the proposal density q(xc|x(ℓ)). Loosely speaking, q(xc|x(ℓ))
is the probability of the move from x(ℓ) to xc. The candidate is not accepted
automatically, however.

To understand the acceptance rule, assume first that the proposal density is
symmetric, i.e., q(x|y) = q(y|x) for all x, y ∈ R

n. It can be interpreted by saying
that the probability for moving from y to x equals the probability of moving from
x to y; one simple symmetric choice is to set

yj = xj + ρ · randn for all 1 ≤ j ≤ n, (5.19)

where randn is a normally distributed random number with variance 1. In this
particular case, the acceptance rule is simple: If the proposed state xc has higher
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probability than the previous state x(ℓ), the candidate is automatically accepted.
However, if it has a lower probability, it is accepted only by a probability that is
proportional to the ratio of the probabilities. Hence, the acceptance probability
γ of the candidate is simply

γ = min

{

1,
p(xc|m)

p(x(ℓ) | m)

}

. (5.20)

If q(x|y) 6= q(y|x), a modification of (5.20) is needed to compensate the asym-
metry:

γ = min

{

1,
p(xc|m) q(x(ℓ)|xc)

p(x(ℓ)|m) q(xc|x(ℓ))

}

. (5.21)

If the candidate is accepted, the next state is x(ℓ+1) = xc. Otherwise, x(ℓ+1) =
x(ℓ).

The distribution of the samples converges asymptotically to p(x|m). In prac-
tice the acceptance is carried out so that one first draws a sample from the
proposal distribution and computes γ. Then a random number from the uniform
distribution Uni (0, 1) is drawn and compared with γ.

As it can be seen from the equations (5.20) and (5.21), the normalization
constant p(m) is canceled out in the computation of the acceptance probability
and therefore it is sufficient to know the posterior density up to the normalization
constant only. This is a very important issue since the computation of p(m) is a
formidable task.

The key problem in the Metropolis-Hastings method is to find effective pro-
posal distribution. This is especially crucial in case of large dimensional problems.
If the proposal distribution is not feasible, γ ≈ 0 for almost all draws and very
few of the candidates get accepted. On the other hand, the proposal distribution
has to be one from which we can perform the draws. Let us demonstrate these
properties with the one-dimensional deconvolution problem studied earlier.

Choose n = 32 and consider the measurement model described in Section
2.2.1. We create noisy data with noise level σ = .1; see Figure 5.2. We wish to
examine the properties of the Metropolis-Hastings algorithm quantitatively; to
this end we compute the Tikhonov regularized solution of the problem, see Figure
5.2. Namely, we will use a Gaussian smoothness prior

pX(x) = exp(−α‖Lx‖22) (5.22)

implying that the posterior distribution is Gaussian. For Gaussian distributions
the MAP estimate (5.12) and the conditional mean estimate (5.13) coincide, so
it holds that

arg min
z∈Rn

{

‖Az −m‖2 + δ‖Lz‖2
}

= arg max
x∈Rn

pX|M (x|m) (5.23)

if we take the parameter α in formula (5.22) to be α = δ/(2σ2), where σ2 is the
noise variance appearing in the likelihood distribution (5.11). Showing that (5.23)
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Figure 5.2: Left: ideal (red) and noisy (black) data. Right: Generalized Tikhonov
regularized solution, which will be compared to the results of the Metropolis-Hastings
algorithm.

holds is left as an exercise. So we have two independent methods for computing
the same function, allowing quantitative measurement of error.

We remark that while formula (5.23) shows that computing the MAP esti-
mate is sometimes equivalent to computing the Tikhonov regularized solution,
the Bayesian approach is more general as it gives quantitative information about
uncertainties in the estimate as well.

Let us take the simple proposal distribution (5.19), where the only degree
of freedom is choosing the parameter ρ > 0 that determines the width of the
distribution. Theoretically, every positive choice of ρ guarantees the convergence
in the approximation (5.14) as the number of samples increases. However, with
unfortunate choices odρ the convergence may be extremely slow and in practice
leads to never-ending computation. More precisely, if ρ is too small, then most
of the candidates are accepted, but they are very close to each other. In this case
the average of the samples is simply close to the initial sample and approaches
the actual average very slowly. On the other hand, too large ρ leads to a chain
where most of the candidates are declined, and consequently same vectors are
repeated extremely often. This situation also leads to very slow convergence.

Programming Metropolis-Hastings method is typically like this: it is pretty
quick to get the algorithm running since it is very simple. However, tuning
the proposal distribution so that the chain samples the posterior distribution
effectively may take a long time. One useful practice is to calculate the acceptance
ratio, or the percentage of accepted candidates, of the chain when performing test
runs. Another helpful thing is to plot values of selected components of the vectors
in the chain as function of the chain index. Let us demonstrate this numerically.
We compute 3000 samples with the choices ρ = 0.001, ρ = 0.025 and ρ = 0.2 in
formula (5.19). See Figure 5.3 for plots of components 8 and 16 of the sample
vectors.
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Figure 5.3: Three different choices of proposal distribution in Metropolis-Hastings algo-
rithm: ρ = 0.001, ρ = 0.025 and ρ = 0.2 in formula (5.19). Plotted are components 8
(black line) and 16 (blue line) of the sample vectors. In the top plot ρ is too small and
the chain moves very slowly. In the middle plot ρ is quite appropriate, whereas in the
bottom plot ρ is too large, leading to the rejection of most candidates.
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5.3.4 Adaptive Metropolis-Hastings method

5.4 Discretization invariance

This topic will not be discussed in the 2008 course.

5.5 Exercises

1. Prove that formula (5.23) holds if we choose α = δ/(2σ2).
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Appendix A

Electrocardiography

This example is due to David Isaacson.

Situation:

H

Ω skin = ∂Ω

H = D(0, 1)

Ω = D(0, 2)
heart

Heart induces an electric potential on ∂H. Assume the disc Ω rH is homo-
geneous. Then quasi-static approximation yields a boundary value problem















∆u = 0 in Ω rH

u|∂H = f

∂u
∂~n

∣

∣

∣

∂Ω
= 0

. (A.1)

Assume also that the skin is totally insulated; therefore ∂u
∂~n

∣

∣

∂Ω
= 0.

We measure on the skin the voltage u|∂Ω (in practice with electrodes; here in
every point). Write

f =
∞
∑

n=−∞
〈f, ϕn〉ϕn, ϕn =

1√
2π
einθ. (on the edge ∂H)

Let’s solve (A.1) in the case f = ϕn. We know from the theory of elliptic partial
differential equations, that the problem has a unique solution un. Write a trial
solution (n 6= 0)

un(r, θ) = anr
|n|einθ + bnr

−|n|einθ,
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which is harmonic. From the boundary conditions

1√
2π
einθ = ϕn(θ) = un(1, θ) = (an + bn)einθ

0 =
d

dr
un(r, θ)

∣

∣

∣

r=2
=
(

an|n|2|n|−1 + bn|n|2−|n|−1
)

einθ.

Further

an + bn =
1√
2π

2|n|an − 2−|n|bn = 0

=⇒ an =
1√
2π

1

(1 + 22|n|)
, bn =

1√
2π

1

(1 + 2−2|n|)
.

The voltage measured on the skin is

un(2, θ) =
(

an2|n| + bn2−|n|
)

einθ.

Write the functions given on ∂Ω in the Fourier basis ψn = 1√
4π
einθ, in which case

〈ψn, ψm〉 = δnm. We obtain
un(2, θ) = cnψn,

where

cn =
√

4π
(

an2|n| + bn2−|n|
)

=
√

2

(

2|n|

1 + 22|n| +
2−|n|

1 + 2−2|n|

)

=
√

2

(

2|n| + 2−|n| + 2−|n| + 2|n|

(1 + 22|n|)(1 + 2−2|n|)

)

=
√

2

(

2|n|+1 + 2−|n|+1

1 + 22|n| + 2−2|n| + 1

)

=
√

2

(

2|n|+1 + 2−|n|+1

22|n| + 2−2|n| + 2

)(

2−|n|−1

2−|n|−1

)

=
√

2

(

1 + 2−2|n|

2|n|−1 + 2−|n| + 2−3|n|−1

)

.

The mapping from the quantity to the measurement is

ϕn 7−→ cnψn,

and cn satisfies (at least when n 6= 0):

cn ≤
2

2|n|−1
=

4

2|n|
.
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Naive reconstruction: Write the potential on the heart in the form

f(θ) =

∞
∑

n=−∞
〈f, ϕn〉ϕn(θ) =

∞
∑

n=−∞
f̂(n)ϕn(θ).

Then the measurement is (ideally) of the form

u
∣

∣

∂Ω
(θ) =

∞
∑

n=−∞
cnf̂(n)ψn(θ).

Now choose N > 0 and consider the truncated bases {ϕn}Nn=−N on ∂H and
{ψn}Nn=−N on ∂Ω. Define

x =







f̂(−N)
...

f̂(N)






∈ R

2N+1

and the measurement

m =







〈u|∂Ω, ψ−N 〉
...

〈u|∂Ω, ψN 〉






=







c−N f̂(−N)
...

cN f̂(N)






.

Then
m = Ax

with

A =







c−N 0
. . .

0 cN






.

So we can make naive reconstruction:

x = A−1m

and recover the voltage at the heart as

N
∑

n=−N

xnϕn(θ).

However, this fails in the case

m = Ax+ ε,

where εn are random numbers from N(0, σ2). Why?
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A.1 Exercises

1. Show that the function rneinθ is harmonic in the domain 1 ≤ r ≤ 2 and
0 ≤ θ ≤ 2π. (Hint: use the Laplace operator in polar coordinates.)

2. The inverse problem of ECG was reduced to a simple form using Fourier
series. More precisely, we study the measurement model m = Ax+ ε in the
case when A is the diagonal matrix

A =







c−N

. . .

cN






, cn =

√
2

(

1 + 2−2|n|

2|n|−1 + 2−|n| + 2−3|n|−1

)

.

Why does the naive reconstruction x ≈ A−1m fail in the presence of noise
ε when N is large? (Hint: for large n we have the estimate |cn| ≤ 22−|n|.)
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