Inverse problems on Riemannian manifolds

Exercises, 26.04.2010

The exercises can be returned to Mikko Salo.

1. Let $\Omega \subseteq \mathbb{R}^n$ be a bounded domain with smooth boundary, and assume that $\gamma = (\gamma^{jk})_{j,k=1}^n$ is a smooth positive definite symmetric matrix in $\overline{\Omega}$. If $F: \overline{\Omega} \to \overline{\Omega}$ is a diffeomorphism and if $F|_{\partial\Omega} = \mathrm{id}$, show that $\Lambda_{F_*\gamma} = \Lambda_{\gamma}$ where $F_*\gamma$ is the pushforward of γ , defined by

$$F_*\gamma(\tilde{x}) = \left. \frac{(DF)\gamma(DF)^t}{|\det(DF)|} \right|_{F^{-1}(\tilde{x})}$$

where $DF = (\partial_k F_j)_{j,k=1}^n$ is the Jacobian matrix.

2. If c is a smooth positive function, show that

$$\Delta_{cg}u = c^{-\frac{n+2}{4}} (\Delta_g + q) (c^{\frac{n-2}{4}}u)$$

where $q = c^{\frac{n-2}{4}} \Delta_{cg}(c^{-\frac{n-2}{4}}).$

- 3. Let (M, g) be a compact Riemannian manifold with boundary, and let $V \in L^{\infty}(M)$ be real valued. Show that there exist numbers $\lambda_1 \leq \lambda_2 \leq \ldots \rightarrow \infty$ such that $-\Delta_g + V \lambda : H_0^1(M) \rightarrow H^{-1}(M)$ is an isomorphism whenever $\lambda \notin \{\lambda_1, \lambda_2, \ldots\}$, and further that there is an orthonormal basis $\{\phi_j\}_{j=1}^{\infty}$ of $L^2(M)$ such that $(-\Delta_g + V)\phi_j = \lambda_j\phi_j$ and $\phi_j \in H_0^1(M)$.
- 4. If $p_0 \in S^{n+1}$, prove that the stereographic projection is a conformal transformation from $S^{n+1} \setminus \{p_0\}$ onto \mathbb{R}^n when these manifolds are equipped with their usual Riemannian metrics.
- 5. Let φ be a smooth function in (M, g). If $A := -h^2 \Delta_g |d\varphi|^2$ and $B := \frac{h}{i} (2\langle d\varphi, d \cdot \rangle + \Delta_g \varphi)$, check that A and B are formally self-adjoint.
- 6. If $(M,g) = (\Omega, e)$ and $0 \notin \overline{\Omega}$, verify that $\varphi(x) = \log |x|$ and $\varphi(x) = \frac{\alpha \cdot x}{|x|^2}$ are limiting Carleman weights. Here $\alpha \in \mathbb{R}^n$ is a fixed vector.
- 7. Prove the lemma in the lectures concerning the existence of semigeodesic coordinates.