# Inverse problems on Riemannian manifolds 

Exercises, 26.04.2010

The exercises can be returned to Mikko Salo.

1. Let $\Omega \subseteq \mathbb{R}^{n}$ be a bounded domain with smooth boundary, and assume that $\gamma=\left(\gamma^{j k}\right)_{j, k=1}^{n}$ is a smooth positive definite symmetric matrix in $\bar{\Omega}$. If $F: \bar{\Omega} \rightarrow \bar{\Omega}$ is a diffeomorphism and if $\left.F\right|_{\partial \Omega}=\mathrm{id}$, show that $\Lambda_{F_{*} \gamma}=\Lambda_{\gamma}$ where $F_{*} \gamma$ is the pushforward of $\gamma$, defined by

$$
F_{*} \gamma(\tilde{x})=\left.\frac{(D F) \gamma(D F)^{t}}{|\operatorname{det}(D F)|}\right|_{F^{-1}(\tilde{x})}
$$

where $D F=\left(\partial_{k} F_{j}\right)_{j, k=1}^{n}$ is the Jacobian matrix.
2. If $c$ is a smooth positive function, show that

$$
\Delta_{c g} u=c^{-\frac{n+2}{4}}\left(\Delta_{g}+q\right)\left(c^{\frac{n-2}{4}} u\right)
$$

where $q=c^{\frac{n-2}{4}} \Delta_{c g}\left(c^{-\frac{n-2}{4}}\right)$.
3. Let $(M, g)$ be a compact Riemannian manifold with boundary, and let $V \in L^{\infty}(M)$ be real valued. Show that there exist numbers $\lambda_{1} \leq \lambda_{2} \leq$ $\ldots \rightarrow \infty$ such that $-\Delta_{g}+V-\lambda: H_{0}^{1}(M) \rightarrow H^{-1}(M)$ is an isomorphism whenever $\lambda \notin\left\{\lambda_{1}, \lambda_{2}, \ldots\right\}$, and further that there is an orthonormal basis $\left\{\phi_{j}\right\}_{j=1}^{\infty}$ of $L^{2}(M)$ such that $\left(-\Delta_{g}+V\right) \phi_{j}=\lambda_{j} \phi_{j}$ and $\phi_{j} \in H_{0}^{1}(M)$.
4. If $p_{0} \in S^{n+1}$, prove that the stereographic projection is a conformal transformation from $S^{n+1} \backslash\left\{p_{0}\right\}$ onto $\mathbb{R}^{n}$ when these manifolds are equipped with their usual Riemannian metrics.
5. Let $\varphi$ be a smooth function in $(M, g)$. If $A:=-h^{2} \Delta_{g}-|d \varphi|^{2}$ and $B:=$ $\frac{h}{i}\left(2\langle d \varphi, d \cdot\rangle+\Delta_{g} \varphi\right)$, check that $A$ and $B$ are formally self-adjoint.
6. If $(M, g)=(\Omega, e)$ and $0 \notin \bar{\Omega}$, verify that $\varphi(x)=\log |x|$ and $\varphi(x)=\frac{\alpha \cdot x}{|x|^{2}}$ are limiting Carleman weights. Here $\alpha \in \mathbb{R}^{n}$ is a fixed vector.
7. Prove the lemma in the lectures concerning the existence of semigeodesic coordinates.

