10.1

$$
\begin{align*}
D(z) & =\exp \left[z \partial^{\top}-\bar{z} \partial\right] \\
& =\exp \left[\left(\sqrt{\frac{\omega}{2}} Q+i \sqrt{\frac{1}{2 \omega}} P\right) \partial^{+}-\left(\sqrt{\frac{\omega}{2}} Q-i \sqrt{\frac{1}{2 \omega}} P\right) \partial\right]-r e c \Delta i=z=\sqrt{\frac{\omega}{2}} \stackrel{1}{Q}+i \sqrt{\frac{1}{2 \omega}} P \in \mathbb{C} \\
& =\exp \left[i \cdot p\left(\sqrt{\frac{7}{2 \omega}}\left(\partial^{+}+\partial\right)\right)-Q\left(i \sqrt{\frac{\omega}{2}}\left(\partial^{+}-\partial\right)\right)\right] \\
& =\exp [i \cdot(P \cdot \hat{Q}-Q \cdot \hat{P})] \quad(1) \tag{1}
\end{align*}
$$

Where we have written hat on Top of posiman \& momenta operators To Avoid mixing them wilt sesloes: $P, Q \in R$
(d) $B y \quad e^{t A} B e^{-t A}=B+[A, B] t+f([A,[A, B]]), f(0)=0$

And $[\hat{P}, \hat{Q}]=\left[\hat{A} \frac{\partial}{\partial t}, x\right]=i \mathbb{L}$ we Get

$$
\begin{aligned}
& {[i(P \hat{Q}-\hat{Q} \hat{P}), \hat{Q}]=-i Q[\hat{P}, \hat{Q}]=Q 1} \\
& {[i(P \hat{Q}-Q \hat{P}), \hat{P}]=i P[\hat{Q}, \hat{P}]=P 1}
\end{aligned}
$$

and linus by (2):

$$
\begin{aligned}
& \text { Thus br (2): } \\
& D(z) \hat{Q} D^{-1}(z)=\hat{Q}+Q 1 \quad \text { and } D(z) \hat{P} \dot{D}^{-1}(z)=\hat{P}+P 1
\end{aligned}
$$

(b) $\operatorname{Si\sim }\left(E,|z\rangle=D(z)\left|\phi_{0}\right\rangle\right.$ We have

$$
\begin{aligned}
& \langle z| \widehat{Q}|z\rangle=\left\langle D(z) \phi_{0}, \widehat{Q} D(z) \phi_{0}\right\rangle \\
& =\left\langle\phi_{0}, D^{-7}(z) \hat{Q} D(z) \varphi_{0}\right\rangle \\
& =\left\langle\phi_{0}, D(-z) \widehat{Q} D^{-7}(-z) \phi_{0}\right\rangle \\
& =\left\langle\phi_{01}(\hat{Q}+Q \eta) \phi_{0}\right\rangle=0+Q\left\langle\phi_{01} \phi_{0}\right\rangle=Q \\
& D E C \sim O E=D^{-1}(Z)=D^{+}(Z)=\exp [i(P \hat{Q}-Q \hat{P})]^{+}
\end{aligned}
$$

$$
\begin{aligned}
& \equiv D(-z)
\end{aligned}
$$

Now, ϕ_{0}, the ground state of the oallare satisfies

$$
\begin{aligned}
& \left\langle\phi_{01}(\hat{Q}-Q D)^{2} \phi_{0}\right)\left\langle\phi_{01}(\hat{P}-P I)^{2} \phi_{0}\right)=\frac{1}{4} \quad(P=Q=0) \\
& \text { But } \left._{0}\langle z|(\hat{Q}-Q D)^{2}|z\rangle=\left\langle\Phi_{01}\left(D(-z)(\hat{Q}-Q D) D^{-1}(-z)\right)\left(D(-z)(\hat{Q}-Q \mathbb{D}) D^{-1}(-z)\right) \phi_{0}\right\rangle\right)
\end{aligned}
$$

where

$$
D(-z)(\hat{Q}-Q \mathbb{D}) \vec{D}(-z)=D(-z) \hat{Q} D^{-2}(-z)-Q \mathbb{Q}=(\hat{Q}+Q \mathcal{Q})-Q \mathbb{1}=\hat{Q}
$$

and Thus

NOTE:

$$
\begin{aligned}
& \text { Thus }\langle z|(\hat{Q}-Q \mid \lambda)^{2}|z\rangle=\left\langle\phi_{0}, \hat{Q}^{2} \phi_{0}\right\rangle \text { And similoe|t } \\
& \quad\langle z|(\hat{p}-Q D)|z\rangle=\left\langle\phi_{0}, \hat{p}^{2} \phi_{0}\right\rangle \text { And Therefore: } \\
& \langle z|(\hat{Q}-Q \|)^{2}|z\rangle\langle z|(\hat{p}-p D)^{2}|z\rangle=\left\langle\phi_{0} \mid \hat{Q}^{2} \phi_{0}\right\rangle\left\langle\phi_{0} \hat{p}^{2} \phi_{0}\right\rangle=\frac{7}{4}
\end{aligned}
$$

$$
D\left(z_{1}\right) D\left(z_{2}\right)=e^{\frac{1}{2}\left(z^{*}, z_{2}-z_{1} z_{2}^{*}\right)} K^{D} D\left(z_{1}+z_{2}\right) \quad\left[\begin{array}{l}
\text { plied } \\
\Leftrightarrow \text { a phase }
\end{array}\right.
$$

-Wis also fellows from: $e^{A} B e^{-A}=B+[A, B]+\ldots$
10.2 C) $B X E X E V A S E$ 4+5.6 $=e^{A+B}=e^{A} e^{B} e^{-\frac{7}{2}[A, B]}$

PRovided, $[A,[A, B]]=[B,[A, B]]=0$.
-SiNCE $D(z)=e^{z \partial t-\bar{z} \partial}$ and $\left[z \partial_{1}^{+}-\bar{z} \partial\right]=-|z|^{2}\left[\partial \partial_{1}^{t} \partial\right]=-|z|^{2}$
We Get

$$
D(z)=e^{-\frac{|z|^{2}}{2}} e^{z \partial t} e^{-\bar{z} \partial}
$$

- jpplying thas in $|z\rangle=D(z)\left|\phi_{0}\right\rangle$ gives:

$$
\begin{aligned}
|z\rangle & =D(z)\left|\phi_{0}\right\rangle=e^{-\frac{|2|^{2}}{2}} e^{z z^{t}}\left\{1+\sum_{j=2} \frac{z^{j}}{j!} \partial^{j}\right\}\left|\phi_{0}\right\rangle \\
& \left.=e^{-\frac{|z|^{2}}{2}} e^{z \partial t}\left|\phi_{0}\right\rangle\left(\partial \mid \phi_{0}\right)=0\right) \\
& \left.\left.=e^{-\frac{|2|^{2}}{2}} \sum_{m=0}^{\infty} \frac{z^{M}}{M!}\left(\partial^{+}\right)^{M} \right\rvert\, \phi_{0}\right) \quad, \quad \partial^{+}\left|\phi_{l}\right\rangle=\sqrt{l+1}\left|\phi_{l+1}\right\rangle \\
& =e^{-\frac{|z|^{2}}{2}} \sum_{M=0}^{0} \frac{z^{M}}{\sqrt{m!}}\left|\phi_{m}\right\rangle
\end{aligned}
$$

d)

$$
\begin{align*}
\left\langle z_{1} \mid z_{2}\right\rangle & =e^{-\frac{1}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)} \sum_{m} \sum_{m}\langle\underbrace{\left\langle\phi_{m} \mid \phi_{m}\right\rangle}_{=\delta_{m m}} \frac{\bar{z}_{1} z_{m}^{m} z_{2}}{\sqrt{m!m!}} \\
& =\exp \left[-\frac{7}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)+\bar{z}, z_{2}\right] \quad \text { (3) } \tag{3}
\end{align*}
$$

To calculare the integen we apply also the reptesentatim of c):

$$
\begin{aligned}
\left.\int_{\mathbb{C}} \mid z\right)\left\langle\left. z\right|^{2} z\right. & =\int^{-|z|^{2}} \sum_{M_{1, m}}\left|\phi_{M}\right\rangle\left\langle\phi_{m}\right| \frac{z^{M} \bar{z}^{m}}{\sqrt{M!m!}} d^{2} z \quad, \quad \partial^{2} z=\partial t \partial y=r d r \cdot \partial \theta \\
& =\int_{0}^{\infty} \int_{0}^{2 \pi} e^{-r^{2}} \sum_{M, m}\left|\phi_{m}\right\rangle\left\langle\phi_{m}\right| \frac{r^{M+m}}{\sqrt{M!m!}} e^{i(M-m) \theta} r \partial \theta \partial r
\end{aligned}
$$

-but $\int_{0}^{2 \pi} e^{i(m-m) \theta} \partial \theta=2 \pi \cdot \delta_{\text {MM }}$ So we'te left:

$$
\begin{equation*}
=2 \pi \sum_{n=0}^{\infty}\left\{\int_{0}^{2} \frac{r^{2 m+7}}{m!} e^{-r^{2}} d r\right\}\left|\phi_{1}\right\rangle\left\langle\phi_{m}\right| \tag{4}
\end{equation*}
$$

- by setiman $A==r^{2}$ the wreceal decomes

$$
\frac{1}{2} \int_{0}^{\infty} \frac{\lambda^{m}}{m!} e^{-\gamma} d \gamma=\frac{1}{2 M!} \int_{0}^{\infty} \partial^{\mu} e^{-\gamma} d \gamma=\frac{1}{2 M!} M!=\frac{1}{2}
$$

\Rightarrow substitute into (3): The reart fulliws.
Finally, TH $(A) \neq \int\langle z| A|z\rangle \partial^{2} z$
Nowevel, Let $A \in B\left(H_{3}\right)$
\Rightarrow FBic self adjont: $A=B+i<$. Let $B=\sum_{i} b_{i}\left|b_{i}\right\rangle\left\langle b_{x}\right|, C=\sum_{j} c_{j} \mid(j)<c_{j}$ Then $\quad \int_{\mathbb{C}}\langle z| A|z\rangle d^{2} z=\sum_{i} b_{i} \cdot \int\left\langle z \mid b_{i}\right\rangle\left\langle b_{i} \mid z\right\rangle d z+i \sum_{j} c_{j} \int\left\langle z \mid c_{j}\right\rangle\langle\langle i \mid z\rangle d z$ $\left.=\sum b_{i} \int\left\langle b_{i}\right| z\right)\left(z \mid b_{i}\right) d z+\ldots=\pi \cdot \pi t(A)$.

Proofs for exercise 10.2. Before the actual proof let us state the following:

$$
\begin{equation*}
\text { If } A^{\dagger}=A \text { and } \operatorname{Tr}\left\{A \mathrm{e}^{\lambda_{1} a^{\dagger}} \mathrm{e}^{-\lambda_{2}^{*} a}\right\}=0 \text { for all } \lambda_{1}, \lambda_{2} \in \mathbb{C} \text {, then } A=0 \tag{0.1}
\end{equation*}
$$

Let us assume that this is proven. Let us denote

$$
\mathcal{L} \rho:=-\mathrm{i}\left[\omega a^{\dagger} a, \rho\right]+\frac{\gamma}{2}\left(2 a \rho a^{\dagger}-a^{\dagger} a \rho-\rho a^{\dagger} a\right) .
$$

Then we know from previous exercises that

$$
\begin{equation*}
\operatorname{Tr}\left\{\left(\mathrm{e}^{t \mathcal{L}} \rho\right) \mathrm{e}^{\lambda_{1} a^{\dagger}} \mathrm{e}^{-\lambda_{2}^{*} a}\right\}=\operatorname{Tr}\left\{\rho \mathrm{e}^{w(t) \lambda_{1} a^{\dagger}} \mathrm{e}^{-w^{*}(t) \lambda_{2}^{*} a}\right\} \quad \text { with } \quad w(t)=\mathrm{e}^{-\left(\frac{\gamma}{2}-\mathrm{i} \omega\right) t} \tag{0.2}
\end{equation*}
$$

i.e., all time dependence can be absorbed into the single scalar function $w: \mathbb{R}_{+} \rightarrow \mathbb{C}$. To make use of this we note that:

$$
\begin{aligned}
\operatorname{Tr}\left\{\left|z_{1}\right\rangle\left\langle z_{2}\right| \mathrm{e}^{\lambda_{1} a^{\dagger}} \mathrm{e}^{-\lambda_{2}^{*} a}\right\} & =\sum_{j=1}^{\infty}\left\langle s_{j} \mid z_{1}\right\rangle\left\langle z_{2}\right| \mathrm{e}^{\lambda_{1} a^{\dagger}} \mathrm{e}^{-\lambda_{2}^{*} a}\left|s_{j}\right\rangle \\
& =\left\langle\mathrm{e}_{1}^{\lambda_{1}^{*}} z_{2} \mid \mathrm{e}^{-\lambda_{2}^{*} a} z_{1}\right\rangle=\left(\mathrm{e}_{1}^{\lambda_{1}^{*} z_{2}}\right)^{*} \mathrm{e}^{-\lambda_{2}^{*} z_{1}}\left\langle z_{2} \mid z_{1}\right\rangle \\
& =\left\langle z_{2} \mid z_{1}\right\rangle \cdot \mathrm{e}^{\lambda_{1} z_{2}^{*}-\lambda_{2}^{*} z_{1}} .
\end{aligned}
$$

Besides proving the part (9.2b) of the exercise, this allows us to exchange multipliers $\alpha_{j} \in \mathbb{C}$ between $\left|z_{j}\right\rangle$ and λ_{j} as follows:

$$
\begin{align*}
\operatorname{Tr}\left\{\left|z_{1}\right\rangle\left\langle z_{2}\right| \mathrm{e}^{\left(\alpha_{1} \lambda_{1}\right) a^{\dagger}} \mathrm{e}^{-\left(\alpha_{2} \lambda_{2}\right)^{*} a}\right\} & =\left\langle z_{2} \mid z_{1}\right\rangle \cdot \mathrm{e}^{\lambda_{1}\left(\alpha_{1}^{*} z_{2}\right)^{*}-\lambda_{2}^{*}\left(\alpha_{2}^{*} z_{1}\right)} \\
& =\frac{\left\langle z_{2} \mid z_{1}\right\rangle}{\left\langle\alpha_{2}^{*} z_{2} \mid \alpha_{1}^{*} z_{1}\right\rangle} \cdot \operatorname{Tr}\left\{\left|\alpha_{2}^{*} z_{1}\right\rangle\left\langle\alpha_{1}^{*} z_{2}\right| \mathrm{e}^{\lambda_{1} a^{\dagger}} \mathrm{e}^{-\lambda_{2}^{*} a}\right\} . \tag{0.3}
\end{align*}
$$

Now, by expressing

$$
\rho(t):=\mathrm{e}^{t \mathcal{L}} \rho(0)=\int_{\mathbb{C}^{2}} p\left(t ; z_{1}, z_{2}\right)\left|z_{1}\right\rangle\left\langle z_{2}\right| \mathrm{d} z_{1} \mathrm{~d} z_{2},
$$

where the representation $p\left(t ; z_{1}, z_{2}\right)$ is non-unique, and then applying (0.2) and (0.3) yields

$$
\begin{align*}
\operatorname{Tr}\left\{\rho(t) \mathrm{e}^{\lambda_{1} a^{\dagger}} \mathrm{e}^{-\lambda_{2}^{*} a}\right\} & =\operatorname{Tr}\left\{\rho(0) \mathrm{e}^{w(t) \lambda_{1} a^{\dagger}} \mathrm{e}^{-w^{*}(t) \lambda_{2}^{*} a}\right\} \\
& =\int_{\mathbb{C}^{2}} p\left(0 ; z_{1}, z_{2}\right) \cdot \operatorname{Tr}\left\{\left|z_{1}\right\rangle\left\langle z_{2}\right| \mathrm{e}^{\left(w(t) \lambda_{1}\right) a^{\dagger}} \mathrm{e}^{-\left(w(t) \lambda_{2}\right)^{*} a}\right\} \mathrm{d} z_{1} \mathrm{~d} z_{2} \\
& =\int_{\mathbb{C}^{2}} \frac{\left\langle z_{2} \mid z_{1}\right\rangle}{\left\langle w(t)^{*} z_{2} \mid w^{*}(t) z_{1}\right\rangle} p\left(0 ; z_{1}, z_{2}\right) \cdot \operatorname{Tr}\left\{\left|w^{*}(t) z_{1}\right\rangle\left\langle w^{*}(t) z_{2}\right| \mathrm{e}^{\lambda_{1} a^{\dagger}} \mathrm{e}^{-\lambda_{2}^{*} a}\right\} \mathrm{d} z_{1} \mathrm{~d} z_{2} . \tag{0.4}
\end{align*}
$$

If we define

$$
\begin{equation*}
\phi(t ; z):=w^{*}(t) z \quad \text { and } \quad \eta\left(t ; z_{1}, z_{2}\right):=\frac{\left\langle z_{2} \mid z_{1}\right\rangle}{\left\langle\phi\left(t ; z_{2}\right) \mid \phi\left(t ; z_{1}\right)\right\rangle} \tag{0.5}
\end{equation*}
$$

and move everything back inside the traces in (0.4) then (0.1) yields

$$
\begin{equation*}
\rho(t)=\int_{\mathbb{C}^{2}} \eta\left(t ; z_{1}, z_{2}\right) \rho\left(0 ; z_{1}, z_{2}\right) \cdot\left|\phi\left(t ; z_{1}\right)\right\rangle\left\langle\phi\left(t ; z_{2}\right)\right| \mathrm{d} z_{1} \mathrm{~d} z_{2} \tag{0.6}
\end{equation*}
$$

Especially, when $\rho(0)=|z\rangle\langle z|$ then $\rho\left(0 ; z_{1}, z_{2}\right)=\delta\left(z_{1}-z\right) \delta\left(z-z_{2}\right)$ and $\eta(t ; z, z)=1 / 1=1$ and thus we get $\mathrm{e}^{t \mathcal{L}}|z\rangle\langle z|=|\phi(t ; z)\rangle\langle\phi(t ; z)|$ which proves part (a) of the exercise.

Finally, by using $\Re\left(z_{1}^{*} z_{2}\right)=\frac{1}{2}\left(z_{1}^{*} z_{2}+z_{1} z_{2}^{*}\right)$ to calculate the absolute value of $\left\langle z_{1} \mid z_{2}\right\rangle=$ $\mathrm{e}^{-\frac{1}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)+z_{1}^{*} z_{2}}$ gives

$$
\left|\left\langle z_{1} \mid z_{2}\right\rangle\right|=\mathrm{e}^{-\frac{1}{2}\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}-z_{1}^{*} z_{2}+z_{1} z_{2}^{*}\right)}=\mathrm{e}^{-\frac{1}{2}\left|z_{1}-z_{2}\right|^{2}} .
$$

Using this for (0.5) proves the part (c) of the exercise:

$$
\begin{aligned}
\left|\eta\left(t ; z_{1}, z_{2}\right)\right| & =\mathrm{e}^{-\frac{1}{2}\left(1-|w(t)|^{2}\right)\left|z_{1}-z_{2}\right|^{2}}=\mathrm{e}^{-\frac{1}{2}\left(1-\mathrm{e}^{-\gamma t}\right)\left|z_{1}-z_{2}\right|^{2}} \\
& =\mathrm{e}^{-\frac{\gamma}{2}\left|z_{1}-z_{2}\right|^{2} t+\mathcal{O}(\gamma t)^{2}} .
\end{aligned}
$$

This shows that the density operator $\mathrm{e}^{t \mathcal{L}}|\psi\rangle\langle\psi|$, with $|\psi\rangle=c_{1}\left|z_{1}\right\rangle+c_{2}\left|z_{2}\right\rangle$, becomes diagonal in the approximate position-momentum eigenspace ${ }^{1}$ with a speed that is proportional to the separation of the initial states z_{1}, z_{2} in the classical phase space. Thus information leaks to the environment with a speed that is proportional to the classical separation of the superposed states. For macroscopic distances this speed is huge compared to the damping speed since $q=(2 \hbar / \omega)^{1 / 2} \Re z$ and $p=(2 \hbar \omega)^{1 / 2} \Im z$ so that $\left|z_{1}-z_{2}\right|^{2} \sim \hbar^{-1}\left|q_{1}-q_{2}\right|^{2}+\hbar^{-1}\left|q_{1}-q_{2}\right|^{2}$.

Finally, to prove (0.1) we note that by taking derivatives of the left hand side w.r.t. λ_{1}, λ_{2} at $\lambda_{1}=\lambda_{2}=0$ one obtains expectations of the form $\operatorname{Tr}\left(A\left(a^{\dagger}\right)^{n} a^{m}\right), n, m \in \mathbb{N}_{0}$. Now, because any polynomial of Q, or P, can be expressed as a linear combinations of this kind of terms the condition on (0.1) implies $\operatorname{Tr}(A p(Q))=0$ for polynomials p. The state of a simple mechanic harmonic oscillator in \mathbb{R} which has no internal degreed of freedom can be represented as $L^{2}(\mathbb{R}, \mu)$ function where $\mu(\mathrm{d} x)=\phi_{0}(x) \mathrm{d} x$. Since polynomials are dense in this space we see that (0.1) holds.

[^0]
[^0]: ${ }^{1}$ To understand this recall the result of Exercise 10.1b. Especially, note that in usual physical units the right hand side becomes $\hbar^{2} / 4$ where \hbar is the Planck constant.

