




Proofs for exercise 10.2. Before the actual proof let us state the following:

If A† = A and Tr
�
Aeλ1a†e−λ∗2a

�
= 0 for all λ1, λ2 ∈ C , then A = 0 . (0.1)

Let us assume that this is proven. Let us denote

Lρ := −i
�
ωa†a, ρ

�
+

γ

2
�
2aρa† − a†aρ− ρa†a

�
.

Then we know from previous exercises that

Tr
�
(etLρ)eλ1a†e−λ∗2a

�
= Tr

�
ρew(t)λ1a†e−w∗(t)λ∗2a

�
with w(t) = e−( γ

2 − iω)t , (0.2)

i.e., all time dependence can be absorbed into the single scalar function w : R+ → C. To make
use of this we note that:

Tr
�
|z1��z2|eλ1a†e−λ∗2a

�
=

∞�

j=1

�sj |z1��z2|eλ1a†e−λ∗2a|sj�

= �eλ∗1az2|e−λ∗2az1� = (eλ∗1z2)∗e−λ∗2z1�z2|z1�
= �z2|z1� · eλ1z∗2 −λ∗2z1 .

Besides proving the part (9.2b) of the exercise, this allows us to exchange multipliers αj ∈ C
between |zj� and λj as follows:

Tr
�
|z1��z2|e(α1λ1)a†e−(α2λ2)∗a

�
= �z2|z1� · eλ1(α∗1z2)∗−λ∗2(α∗2z1)

=
�z2|z1�

�α∗2z2|α∗1z1�
· Tr

�
|α∗2z1��α∗1z2|eλ1a†e−λ∗2a

�
.

(0.3)

Now, by expressing

ρ(t) := etLρ(0) =
�

C2
p(t; z1, z2)|z1��z2|dz1dz2 ,

where the representation p(t; z1, z2) is non-unique, and then applying (0.2) and (0.3) yields

Tr
�
ρ(t)eλ1a†e−λ∗2a

�
= Tr

�
ρ(0)ew(t)λ1a†e−w∗(t)λ∗2a

�

=
�

C2
p(0; z1, z2) · Tr

�
|z1��z2|e(w(t)λ1)a†e−(w(t)λ2)∗a

�
dz1dz2

=
�

C2

�z2|z1�
�w(t)∗z2|w∗(t)z1�

p(0; z1, z2) · Tr
�
|w∗(t)z1��w∗(t)z2|eλ1a†e−λ∗2a

�
dz1dz2 .

(0.4)

If we define

φ(t; z) := w∗(t)z and η(t; z1, z2) :=
�z2|z1�

�φ(t; z2)|φ(t; z1)�
, (0.5)

and move everything back inside the traces in (0.4) then (0.1) yields

ρ(t) =
�

C2
η(t; z1, z2)ρ(0; z1, z2) · |φ(t; z1)��φ(t; z2)|dz1dz2 (0.6)

Especially, when ρ(0) = |z��z| then ρ(0; z1, z2) = δ(z1 − z)δ(z − z2) and η(t; z, z) = 1/1 = 1 and
thus we get etL|z��z| = |φ(t; z)��φ(t; z)| which proves part (a) of the exercise.
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Finally, by using �(z∗1z2) = 1
2(z∗1z2 + z1z∗2) to calculate the absolute value of �z1|z2� =

e−
1
2 (|z1|

2+|z2|
2) + z∗1z2 gives

|�z1|z2�| = e−
1
2 (|z1|

2 + |z2|
2− z∗1z2 + z1z∗2 ) = e−

1
2 |z1−z2|

2
.

Using this for (0.5) proves the part (c) of the exercise:

|η(t; z1, z2)| = e−
1
2 (1−|w(t)|2)|z1−z2|

2
= e−

1
2 (1− e−γt)|z1−z2|

2

= e−
γ
2 |z1−z2|

2t +O(γt)2 .

This shows that the density operator etL|ψ��ψ|, with |ψ� = c1|z1� + c2|z2�, becomes diagonal
in the approximate position-momentum eigenspace 1 with a speed that is proportional to the
separation of the initial states z1, z2 in the classical phase space. Thus information leaks to
the environment with a speed that is proportional to the classical separation of the superposed
states. For macroscopic distances this speed is huge compared to the damping speed since
q = (2�/ω)1/2�z and p = (2�ω)1/2�z so that |z1 − z2|2 ∼ �−1|q1 − q2|2 + �−1|q1 − q2|2.

Finally, to prove (0.1) we note that by taking derivatives of the left hand side w.r.t. λ1, λ2

at λ1 = λ2 = 0 one obtains expectations of the form Tr (A(a†)nam), n, m ∈ N0. Now, because
any polynomial of Q, or P , can be expressed as a linear combinations of this kind of terms the
condition on (0.1) implies Tr (Ap(Q)) = 0 for polynomials p. The state of a simple mechanic
harmonic oscillator in R which has no internal degreed of freedom can be represented as L2(R, µ)
function where µ(dx) = φ0(x)dx. Since polynomials are dense in this space we see that (0.1)
holds.

1To understand this recall the result of Exercise 10.1b. Especially, note that in usual physical units the right
hand side becomes �2/4 where � is the Planck constant.
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