## Quantum Probability: Solution to Exercise 8.1

1. Let $\Phi: B(\mathcal{H}) \rightarrow B(\mathcal{H})$, with $\operatorname{dim}(\mathcal{H})=n$, be a completely positive superoperator. Show that two Krauss representations

$$
\Phi(\rho)=\sum_{\alpha=1}^{a} M_{\alpha} \rho M_{\alpha}^{\dagger}=\sum_{\beta=1}^{b} N_{\alpha} \rho N_{\alpha}^{\dagger},
$$

are related by an unitary matrix $U \in \mathbb{C}^{n^{2} \times n^{2}}$ so that

$$
M_{\alpha}=\sum_{\beta=1}^{n^{2}} U_{\alpha \beta} N_{\beta},
$$

where $M_{\alpha}=N_{\beta}=0$ for $\alpha \geq a+1$ and $\beta \geq b+1$. Since the dimension of unitary matrices in $\mathbb{C}^{n}$ is $n^{2}$ this shows that there can not be more than $n^{4}$ Krauss representations for $\Phi$.

Let $\left\{s_{j}\right\}$ and $\left\{e_{j}\right\}$ be arbitrary but fixed ON-bases of $\mathcal{H}_{S}$ and $\mathcal{H}_{E}$ respectively. Define and unnormalized maximally entangled vector:

$$
\Psi:=\sum_{i}\left|s_{i}, e_{i}\right\rangle
$$

By using the two Krauss decompositions one gets

$$
\rho_{S E}:=\left(\Phi \otimes 1_{E}\right)|\Psi\rangle\langle\Psi|=\sum_{\alpha=1}^{a}\left|\tilde{\Psi}_{\alpha}\right\rangle\left\langle\tilde{\Psi}_{\alpha}\right|=\sum_{\alpha=1}^{b}\left|\tilde{\Omega}_{\beta}\right\rangle\left\langle\tilde{\Omega}_{\beta}\right|,
$$

where $\tilde{\Psi}_{\alpha}, \tilde{\Omega}_{\beta} \in \mathcal{H}_{S} \otimes \mathcal{H}_{E}$ are defined by

$$
\tilde{\Psi}_{\alpha}:=\left(M_{\alpha} \otimes 1_{E}\right) \Psi \quad \text { and } \quad \tilde{\Omega}_{\beta}:=\left(N_{\beta} \otimes 1_{E}\right) \Psi .
$$

These are not assumed to be normalized nor even linearly independent.
Now, there is the general trick: Any operator $A$ acting on $\mathcal{H}_{S}$ satisfies

$$
A \phi=\left(1_{S} \otimes\left\langle\phi^{*}\right|\right)\left(A \otimes 1_{E}\right) \Psi,
$$

where $\phi^{*}:=\sum_{i} \phi_{i}^{*} e_{i} \in \mathcal{H}_{E}$ for $\phi=\sum_{i} \phi_{i} s_{i} \in \mathcal{H}_{S}$. We will use the this trick to write

$$
\begin{equation*}
M_{\alpha} \phi=\left(1_{S} \otimes\left\langle\phi^{*}\right|\right) \tilde{\Psi}_{\alpha} \quad \text { and } \quad N_{\beta}=\left(1_{S} \otimes\left\langle\phi^{*}\right|\right) \tilde{\Omega}_{\beta} . \tag{0.1}
\end{equation*}
$$

Let us purify these be in terms of the vectors in $\mathcal{H}_{S} \otimes \mathcal{H}_{E} \otimes \mathcal{H}_{R}$ :

$$
\mathcal{A}:=\sum_{\alpha=1}^{a} \tilde{\Psi}_{\alpha} \otimes r_{\alpha} \quad \text { and } \quad \mathcal{B}:=\sum_{\beta=1}^{b} \tilde{\Omega}_{\beta} \otimes r_{\beta},
$$

Here $\left\{r_{\gamma}\right\}$ is a ON-basis for a Hilbert space $\mathcal{H}_{R}$. Since $a, b \leq n^{2}$ we may take $\operatorname{dim}\left(\mathcal{H}_{R}\right)=n^{2}$ and define $\left|\tilde{\Psi}_{\alpha}\right\rangle=\left|\tilde{\Omega}_{\beta}\right\rangle=0$ for $\alpha \geq a+1$ and $\beta \geq b+1$. Since $\rho_{S E}=\operatorname{Tr}_{R}(|\mathcal{A}\rangle\langle\mathcal{A}|)=\operatorname{Tr}_{R}(|\mathcal{B}\rangle\langle\mathcal{B}|)$ there exists an unitary transformation $U$ acting on $\mathcal{H}_{R}$ such that

$$
\mathcal{A}=\left(1_{S E} \otimes U\right) \mathcal{B},
$$

where $1_{S E}:=1_{S} \otimes 1_{E}$. Now expressing $U=\sum_{\alpha, \beta} U_{\alpha \beta}\left|r_{\alpha}\right\rangle\left\langle r_{\beta}\right|$ one gets

$$
\begin{aligned}
\sum_{\alpha} \tilde{\Psi}_{\alpha} \otimes r_{\alpha} & =\mathcal{A}=\left(1_{S E} \otimes U\right) \mathcal{B}=\left(1_{S E} \otimes U\right) \sum_{\beta} \tilde{\Omega}_{\beta} \otimes r_{\beta} \\
& =\sum_{\alpha}\left\{\sum_{\beta} U_{\alpha \beta} \tilde{\Omega}_{\beta}\right\} \otimes r_{\alpha}
\end{aligned}
$$

By the ON property of $\left\{r_{\alpha}\right\}$ each $\alpha$ term above is ortogonal to the others. Thus we get

$$
\tilde{\Psi}_{\alpha}=\sum_{\beta} U_{\alpha \beta} \tilde{\Omega}_{\beta} \quad \text { for each } \quad \alpha=1,2, \ldots, n^{2}
$$

By using the representation trick, i.e., (0.1), this implies

$$
M_{\alpha} \phi=\left(1_{S} \otimes\left\langle\phi^{*}\right|\right) \tilde{\Psi}_{\alpha}=\sum_{\beta} U_{\alpha \beta}\left(1_{S} \otimes\left\langle\phi^{*}\right|\right) \tilde{\Omega}_{\beta}=\sum_{\beta} U_{\alpha \beta} N_{\beta} \phi
$$

Since $|\phi\rangle \in \mathcal{H}_{S}$ was arbitrary this completes the proof.
(8.2)
(子) The dosis $\{z>\}$ spans $\partial C_{S} \Rightarrow$ operarges fully characrevized on now they oct en the vectors |R

$$
\begin{aligned}
\partial_{I}|l\rangle & =e^{i \omega t M} \partial e^{-i \omega t M}|\ell\rangle \quad \mid \quad \text { Number opetator } N|\ell\rangle=\ell|\ell\rangle \\
& \left.=e^{i \cdots} \partial e^{-i \omega t l} \mid \ell\right) \\
& \left.=e^{-i \omega t l} e^{i \omega A M} \partial \mid \ell\right) \\
& =e^{-i \omega t l} e^{i \omega t M} \sqrt{\ell}|\ell-1\rangle=\sqrt{l} e^{-i \omega t \ell} e^{i \omega t(\ell-1)}|\ell-1\rangle \\
& =e^{-i \omega t} \partial|\ell\rangle \quad \forall \ell \in N N_{0} \\
\Rightarrow & \partial I(A)=e^{i \omega t} \partial
\end{aligned}
$$

(b)-Let's denote $\Theta_{0} \equiv U_{0}(x):=e^{-i \omega+H_{0}}$
$\Rightarrow$ iot $U_{0}=H_{0} U_{0}$ (fundamental solurion ro S(hreidinut's Ele.)

- Non, $P_{I} \equiv S_{I}(x)=U_{0}^{-7}(x) P(x) U_{0}(x)$
al $\rho(x)=U_{0}(x) P_{I}(x) U_{0}^{-1}(x)$
- Letis substitute inIs into (0.1): LNS olves:
- cumparing lhs aht rhs ve oet:

$$
P_{I}=U_{0}^{-1}\left\{2 . \rho \partial^{t}-\frac{8}{2} a^{t} \partial \rho-\frac{8}{2} \rho a^{t} \partial\right\} U_{0}
$$

- The fiest rerm Goes:

$$
\begin{aligned}
U_{0}^{-1} \partial \rho \partial^{t} U_{0} & =\left(U_{0}^{-1} \partial U_{0}\right)\left(U_{0}^{-1} \rho U_{0}\right)\left(U_{0}^{-1} \partial U_{0}\right)^{+} \\
& =\partial I P_{I} \partial_{I}^{+}
\end{aligned}
$$

$$
\stackrel{(\partial)}{=} \quad \partial P_{I} \partial^{t}
$$

- other remas Go similvelx $\Rightarrow \dot{\rho}_{I}=\delta \cdot\left\{\partial \rho_{I} \partial^{\dagger}-\frac{2}{2}\left(\partial \partial \rho_{I}+\rho_{I} \partial_{\partial}\right)\right\}$

$$
\begin{aligned}
& \text { - Now RHS of 0.1 olves: } \\
& \dot{\rho}=-n\left[N_{0}, \rho\right] \\
& +\delta \partial \rho \partial^{T}-\frac{\delta}{2} \partial \partial \rho-\frac{\delta}{2} \rho \partial^{T} \partial \\
& \underbrace{+\bar{i} H_{0} O^{\top}}_{i U_{08 I} U_{0}^{-2} H_{0}} \\
& 1 \\
& \bar{A} \mathrm{SNo}
\end{aligned}
$$

8.2 continvess...
(C)

Let's oEfire $\tilde{\partial}(x)==U_{0}(x) \partial U_{0}^{-1}(t)$
UEE: $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)$
THEN

$$
\begin{aligned}
\partial E f(A):= & \operatorname{Tr}[\hat{\partial}(A) \rho(A)]=\operatorname{TH}\left[\tilde{\partial} U_{0} \rho_{I} U_{0}^{-1}\right] \\
& =\operatorname{Tr}\left[U_{0} \tilde{\partial}_{0} \Theta_{I}\right]=\operatorname{Tr}\left[\partial \rho_{I}(A)\right]
\end{aligned}
$$

- Now, using $\left[\partial_{1} \partial^{+}\right]=11$ And cyclic identity

$$
\begin{aligned}
& \frac{d}{\partial A} f(\pi)=\operatorname{Tr}\{\partial \dot{\rho}\} \\
&=\frac{8}{2} \operatorname{Tr}\left\{2 \partial^{2} \rho \partial^{t}-\partial \partial \partial \rho-\partial \rho \partial^{t} \partial\right\} \\
&=\frac{8}{2}\left[2 \operatorname{Tr}\left[\partial^{2} \rho \partial^{t}\right]-\operatorname{Tr}\left[\partial \partial^{t} \partial \rho\right]-\operatorname{Tr}\left[\partial^{2} \rho \partial^{t}\right]\{ \right. \\
&=\frac{8}{2}\left\{2 \operatorname{Tr}\left[\partial^{\operatorname{T} \partial \partial \rho}\right]-\operatorname{tr}\left[\partial \partial^{t} \partial \rho\right]-\operatorname{Tr}\left[\partial^{t} \partial \partial \rho\right]\right\} \\
&=\frac{8}{2} \operatorname{Tr}\left(\left[\partial_{1}^{t} \partial\right] \partial \rho\right)=-\frac{8}{2} \operatorname{Tr}(\partial \rho I) \\
&-1
\end{aligned}
$$

$$
=-\frac{5}{2} f(t)
$$

- Clenely, this is solued by $f(\rightarrow)=e^{-\frac{8}{2} t f(0)}$
$(\partial)$

$$
\begin{aligned}
& \text { defint } \partial(x)=\operatorname{Tr}\left(\operatorname{ata}^{\tan } P(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{tr}\left(a \partial P_{I}\right) \\
& \text { Then } g^{\prime}(\pi)=\frac{8}{2} T H\left(\partial^{t} \partial\left\{2 \partial \rho_{I} \partial^{t}-\partial^{\dagger} \partial \rho_{I}-\rho_{I} \partial^{\top} \partial\right\}\right) \\
& =\frac{8}{2} \cdot\left\{2 \operatorname{rr}\left(\partial^{\dagger} \partial \partial \partial \rho_{I}\right)-2+r\left(\partial^{\dagger} \partial \partial^{\dagger} \partial \rho_{I}\right)\right\} \\
& =\delta \operatorname{Tr}\left(\partial^{+}\left[\partial_{1}^{+} \partial\right] \partial \rho_{I}\right)=-\delta \operatorname{Tr}\left(\partial^{+} \partial \rho_{I}\right) \\
& =-\delta>(x)
\end{aligned}
$$

- This is sulved by $\quad \partial(\pi)=e^{-\delta A} g(0) \theta$
a) Let's staet by opening definimons:
(a) $A_{I}\left(A_{1} \bar{\lambda}_{1} t\right):=\operatorname{Tr}\left(P_{I}(x) e^{\text {AT }} e^{-\bar{\lambda} \partial}\right) \quad, \quad A_{1} \bar{A} \in C$ (WE TMNE $\bar{\lambda}=\lambda^{*}$ IJTER)
(1) $\partial_{*} \rho_{I}=\frac{\delta}{2}\left(2 \partial \rho_{I} \partial^{\dagger}-\partial \partial \rho_{I}-\rho_{I} \partial^{t} \partial\right)$
- Letis exptess $\partial t$ 讨I with These by using $\operatorname{Tr}(A B C)=\operatorname{Tr}(C A B)=\operatorname{Tr}(B C A)$ :

- on the ciner hand:
(3) $\frac{\partial}{\partial A} M_{I}=T H\left(\beta_{I} \partial^{t} e^{7 \partial t-\bar{\lambda} a}\right)$
(4) $\frac{\partial}{\partial \bar{\lambda}} \partial_{I}=T H\left(\beta_{I} e^{\Delta t}(-\partial) e^{-\bar{\lambda} \partial}\right)$
- out steatege to derive the PDE fol $\partial I$ is now to bring all Tetmas $(2 a, b, c),(3),(4)$ in Re The stombod fotm:
(5) $\operatorname{Tr}\left(P_{ \pm}\left(\partial^{t}\right)^{m} e^{7 \partial t}(-\partial)^{m} e^{-\bar{\lambda} \partial}\right), M, M \in N_{0} \equiv\{0,7,2,3, \ldots\}$
by usinc The formula:
(6) $e^{\# A} B e^{-A A}=B+[A, B] t+f\left([A,[A, B]]_{1} t\right)$
whete $f(0, t)=0$.
- Terms (2a), (3) ant (4) ate ateady in ite sto. Totm.
- Let's pot (2b) in Torm (5):
$-\operatorname{sim} \mid a+y_{1} \underbrace{a}_{=(7 a)}$
(8)

$$
\partial e^{\lambda \partial t}=e^{\lambda \partial t}\left(e^{-\lambda \partial^{t}} \partial e^{\lambda \partial^{t}}\right)=e^{\lambda \partial^{t}}\left\{\partial+\left[y^{t} \partial\right](-\lambda)+0\right\}
$$

$$
\left.=e^{\hat{e} a t} a+q b\right)
$$

- Substitulina These into (2) And usinc ceclicity of tence yeld ( $7 a$ ) And ( $7 b$ ) concel terme ( $2 a$ ) and Mus we Get:

$$
\begin{aligned}
& \partial_{A} \partial I=-\frac{8}{2}\left\{\bar{\lambda} \cdot \operatorname{TH}\left(\rho_{I} e^{A \partial t}(-\partial) e^{-\lambda \partial}\right)+\lambda \cdot T H\left(\rho_{I} \partial e^{+\partial t} e^{-\lambda \partial}\right)\right\} \\
& (3) \&(4)
\end{aligned}
$$

(9)

$$
\begin{array}{r}
(3) K(4) \\
=
\end{array} \frac{8}{2}\left[\bar{\lambda} \frac{\partial}{\partial \lambda} N I+\lambda \frac{\partial}{\partial \lambda} \partial I\right\}
$$

- Now $\frac{\partial}{\partial(1-\lambda)}=\frac{\partial A}{\partial(\operatorname{LiA})} \frac{\partial}{\partial \lambda}=\left(\frac{\partial \omega A}{\partial \lambda}\right)^{-1} \frac{\partial}{\partial A}=\lambda \frac{\partial}{\partial \lambda} \operatorname{Ard} \frac{\partial}{\partial(\operatorname{mit})}=\frac{\partial}{\partial \lambda}$
- Thus (9) is Equivilent to the PDE:
(10) $\left[\frac{\partial}{\partial \pi}+\frac{\delta}{2}\left(\frac{\partial}{\partial(1-7)}+\frac{\partial}{\partial(1 \infty \pi)}\right)\right] \hat{J I}=0$

$$
\begin{aligned}
& \left.e^{-\bar{\lambda} \partial} \partial^{+}=\left(e^{-\bar{\lambda} \partial} \partial^{\lambda} e^{\bar{\lambda} \partial}\right) e^{-\bar{\lambda} \partial} \quad \text { (NOTE: } e^{\text {EA }} e^{-A A}=1 \text { DY poret SERES }\right) \\
& =\left\{a^{t}+\left[\partial_{1} \partial^{t}\right](-\bar{A})+0\right\} e^{-\bar{\lambda} \partial} \cdot \frac{n}{i} \\
& \text { (7) }=\partial^{t} e^{-\bar{\eta} \partial}-\bar{\lambda} \cdot e^{-\bar{\lambda} \partial} \quad \text { - }\left[x_{1}\left[\partial_{1} \partial^{t}\right]\right]=0, \forall x
\end{aligned}
$$

8.3 b) Method of chDeacteristics is an OVER FILL fil our ppoblen. Anvway. MC for a General limear PDE:

$$
\left.L M(t) \equiv b(x) \cdot D M+C(x) M(x)=0 \quad, \quad x \equiv c t^{2} \ldots t^{\partial}\right) \in \mathbb{R}^{d}, D-\left(\frac{\partial}{\partial x^{\prime}} \cdots \frac{\partial}{\partial x^{d}}\right)
$$

Yieldra (Detalls: L.C.Evans, Pattial diff. Equations AMS, P. 99-100)

$$
\text { (1)) }\left\{\begin{array}{l}
\frac{\partial}{\partial \Delta} x(x)=D(x(x)) \\
\frac{\partial}{\partial x} Z(x)=-C(x(x)) z(x)
\end{array}\right.
$$

where $r$ is a Technics parameret ihst patametrizes a cutve $\delta \mapsto(X(\alpha), Z(\lambda))$ on The solotion Monfuld $\left.\sum(x, M(t))=\operatorname{LM}(t)=0, t \in K\right\}$ of The PDE. Here $K \subset \mathbb{R}^{d}$ is The DOMد~~ where PDE is ribe sulved. By solving (a) one hupes to de oble to relate The Genetsl vjlue of $M(t)$ To a krow beundaey volve of $M\left(x_{0}\right) \in \partial K$ by conrectin $\partial$

$$
\begin{aligned}
& (x(0), z(0))=\left(t_{0}, M\left(x_{0}\right)\right) \\
& \left(x\left(x_{0}\right), z\left(x_{1}\right)\right)=\left(t_{1} M(x)\right) .
\end{aligned}
$$

IN OUR CSE, $x=\left(x^{2}, x^{2}, t^{3}\right)=(1, \neq \overline{7})$

$$
\begin{aligned}
& D(x)=\left(1, \frac{8}{2} x^{1}, \frac{8}{2} x^{2}\right) \\
& c(x)=0 \\
& k=\left\{\left(x^{7}, x^{2}, t^{3}\right) \in \mathbb{R}^{3}: x^{1} \geq 0\right\} \\
& \Rightarrow g k=\{0\}+R^{2}
\end{aligned}
$$

NOTE: WF Culd J) 50 chaSE $x=\left(t_{1}, N A, 1 N \overline{7}\right)$ (ए) and elotrin the sametesit.
Also note= WE cuasider INIMDIY $\mathbb{R}^{d}$ bUT EVERYTMANA cees smouthly in cyas well...

- Of coulse, We want to p
-Let's choose patameter a such that $=x^{1}(\gamma)=r$.
- Then (1) ンelda=
-Let $y_{I}\left(0, A_{1} \bar{\lambda}\right)==\eta\left(A_{1} \overline{7}\right) \equiv \operatorname{Tr}\left(\rho(0) e^{\lambda \partial^{\top}} e^{-\bar{\lambda}}\right)$.
-TMEN:
- No SEtTINM $\lambda=\lambda_{0} \cdot e^{\frac{5}{2} \alpha}, \bar{\lambda}=\bar{A}_{0} \cdot e^{\frac{\delta}{2} \lambda}$ And $t=A=$

$$
\lambda_{I}\left(x_{1}, \overline{\overline{7}}\right)=y\left(\lambda e^{\frac{8}{2} x}, \overline{7} e^{-\frac{8}{2} t}\right)
$$

- 17's of cule Eas ro checr by substatution iñ PDE Wat ins is solution for. $A_{1} \bar{A} \in \mathbb{C}$ os well.
$8.3 c)$ Let $y_{5}\left(x, x_{1} \bar{y}\right)=\operatorname{Tr}\left(g(x) e^{\lambda^{2} t} e^{\bar{\lambda} \partial}\right)$
- This solves PDE:

$$
\left[\frac{\partial}{\partial t}+\left(\frac{8}{2}-i \omega\right) \frac{\partial}{\partial \operatorname{in} \lambda}+\left(\frac{8}{2}+i \omega\right) \frac{\partial}{\partial \sin A}\right] \eta s=0
$$

- To obtain this OAE works Just linein a) i
indeed, there is a one extra term in (2) coming

$$
\text { from } \operatorname{Tr}(-i\left[H_{01} \rho\right] e^{\left.A \partial e^{-\bar{\lambda} \partial}\right)}=-i \omega \underbrace{\operatorname{Tr}\left(\rho e^{A \partial e^{-\lambda \partial} \partial \partial \partial}\right)}_{=(17 b)}+i \omega \underbrace{T_{r}(\rho \partial \partial e}_{=-61 c)}
$$

- TERMS (lib) and ( 170 ) are handled ) ut line terms ( 2 b) an (ac) respectruly.
- Solution is obtained by using Mc as before as wall:

$$
\eta_{S}\left(t, A_{1} \overline{7}\right)=\eta\left(A \cdot e^{-\left(\frac{8}{2}-i \omega\right) t}, \overline{7} \cdot e^{-\left(\frac{\delta}{2}+i \omega\right) t}\right)
$$

