Quantum Probability: Exercise set 6 (17.3.2010 - Corrected version)

1. Let k = 1, 2. Suppose \mathcal{H}_k are Hilbert spaces and $H_k \in \mathcal{B}(\mathcal{H}_k)$ are self-adjoint operators. Define $H := H_1 \otimes I_2 + I_1 \otimes H_2$ on $\mathcal{H}_1 \otimes \mathcal{H}_2$ and set $U_k(t) := e^{-itH_k}$ and $U(t) := e^{-itH}$. (a) Prove

$$U(t) = U_1(t) \otimes U_2(t)$$
 for all $t \in \mathbb{R}$.

(b) How does the Schmidt number of a density operator ρ evolve under the Hamiltonian H?

2. (a) Show that $\psi \in \mathcal{H}_1 \otimes \mathcal{H}_2$ is not determined by $\rho_1 = \text{Tr}_2(|\psi\rangle\langle\psi|)$ and $\rho_2 = \text{Tr}_1(|\psi\rangle\langle\psi|)$.

(b) Suppose, that the non-zero eigenvalues of ρ_1 are non-degenerate. By writing the Schmidt-decomposition of ψ in a suitable basis argue that to specify ψ one must generally know m-1 real numbers $\{s_j : j = 1, ..., m\}$ in addition to ρ_1, ρ_2 to determine ψ up to a global phase.

- 3. Suppose \mathcal{H} is *n*-dimensional. Show that the real-dimension of the set of density matrices is $n^2 1$.
- 4. Let $\{e_1, e_2\}$ be a ortonormal basis of $\mathcal{H} = \mathbb{C}^2$. For the $\mathcal{H} \otimes \mathcal{H}$ -state

$$\psi = \frac{1}{\sqrt{2}}e_1 \otimes \left(\frac{1}{2}e_1 + \frac{\sqrt{3}}{2}e_2\right) + \frac{1}{\sqrt{2}}e_2 \otimes \left(\frac{\sqrt{3}}{2}e_1 + \frac{1}{2}e_2\right)$$

- (a) Compute $\rho_A = \text{Tr}_2(|\psi\rangle\langle\psi|)$ and $\rho_B = \text{Tr}_1(|\psi\rangle\langle\psi|)$;
- (b) Find the Schmidt decomposition of ψ .
- 5. Let \mathcal{H}_A be finite dimensional and suppose ρ_A is a density matrix on \mathcal{H}_A .
 - (a) Find another Hilbert space, \mathcal{H}_B , and a state $\psi \in \mathcal{H}_A \otimes \mathcal{H}_B$ such that $\rho_A = \text{Tr}_B(|\psi\rangle\langle\psi|)$.

(b) Suppose $\psi_1, \psi_2 \in \mathcal{H}_A \otimes \mathcal{H}_B$ satisfy $\rho_A = \text{Tr}_B(|\psi_k\rangle \langle \psi_k|), k = 1, 2$. Prove that there exists an unitary operator U_B on \mathcal{H}_B such that $\psi_2 = (I \otimes U_B)\psi_1$.

6. By finding a counterexample show that Gleason's theorem does not hold when $\dim(\mathcal{H}) = 2$.