Quantum Probability: Exercise set (4+5) (3.3.2010)

Unless otherwise stated, \mathcal{H} denotes a complex separable Hilbert space with an innerproduct (x, y) and a norm $||x|| = \sqrt{(x, x)}$. We denote by \mathcal{F}_{\pm} the bosonic (+) and fermionic (-) Fock spaces. We write [A, B] := AB - BA and $\{A, B\} := AB + BA$ for operators A, B. Denote by $\mathcal{L}(X)$ the set of linear operators $A : X \to X$.

- (a) Prove that ||x + y||² + ||x y||² = 2||x||² + 2||y||² for all x, y ∈ H.
 (b) Express the inner product (x, y) for general x, y ∈ H in terms the norms ||z|| = (z, z) where z ∈ H is a function of x, y. This shows that the inner product is completely determined by the norm ||•||.
- 2. (a) Show that for any $a(x): P_{\pm}\mathcal{H}^n \to P_{\pm}\mathcal{H}^{n-1}, x \in \mathcal{H} \text{ and } n \in \mathbb{N}.$ (b) Set $a_{\pm}^*(x):=P_{\pm}a^*(x)$. Show that $a_{\pm}^*(x): P_{\pm}\mathcal{H}^n \to P_{\pm}\mathcal{H}^{n+1}$
- 3. Show that $\{a_{-}(x), a_{-}^{*}(y)\} = (x, y)I$.
- 4. Denote $||A||_{X \to Y} := \sup \{ ||Ax||_Y : x \in X, ||x||_X \le 1 \}$. Show that:
 - (a) $||a(x)||_{\mathcal{H}^n \to \mathcal{H}^{n-1}} \le \sqrt{n} ||x||.$
 - (b) $||a^*(x)||_{\mathcal{H}^n \to \mathcal{H}^{n+1}} \le \sqrt{n+1} ||x||.$
- 5. Let A, B be bounded linear operators on \mathcal{H} . Show that

$$e^{tA}Be^{-tA} = B + [A, B] + \frac{[A, [A, B]]}{2!}t^2 + \frac{[A, [A, [A, B]]]}{3!}t^3 + \dots$$

6. Using the previous exercise prove that [A, [A, B]] = [B, [A, B]] = 0 implies:

$$e^{A+B} = e^A e^B e^{-\frac{1}{2}[A,B]}$$

- 7. Tensor product $\mathcal{H}_1 \otimes \mathcal{H}_2$ can be considered as the set of equivalence classes in $\mathcal{H} := \mathcal{H}_1 \times \mathcal{H}_2$ such that $x \otimes y := \{(z, w) \in \mathcal{H} : L(z, w) = L(x, y) \text{ for all bilinear forms } L : \mathcal{H} \to \mathbb{C}\}$. If $A_k \in \mathcal{L}(\mathcal{H}_k), k = 1, 2$, then $A_1 \otimes A_2 \in \mathcal{L}(\mathcal{H}_1 \otimes \mathcal{H}_2)$ is defined by $(A_1 \otimes A_2)(x_1 \otimes x_2) = A_1x_1 \otimes A_2x_2$. Show that:
 - (a) Tensor product of two self adjoint operators is self adjoint;
 - (b) Tensor product of two unitary operators is unitary;
 - (c) Tensor product of two projection operators is projection.
- 8. Let \mathcal{H}_k , k = 1, 2, be finite dimensional. Let ρ be a state (density matrix) on $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2$. Let M_1 be a self-adjoint operator on \mathcal{H}_1 so that $M := M_1 \otimes I$ is a self-adjoint operator on \mathcal{H} . Define the partial trace $\operatorname{tr}_2 : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H}_1)$ by first setting $\rho_2(\alpha_1 \otimes \alpha_2) := \operatorname{tr}(\alpha_2) \cdot \alpha_1$ for one-dimensional projectors α_k , k = 1, 2, and then extending to general $\mathcal{L}(\mathcal{H})$ by linearity.
 - (a) Show that $\operatorname{tr}(M\rho) = \operatorname{tr}(M_1\rho_1)$.

(b) Show that $(A, B) := \operatorname{tr} (A^*B)$ defines an inner product on $\mathcal{L}(\mathcal{H}_1)$ and thus makes $\mathcal{L}(\mathcal{H}_1)$ itself a Hilbert space. Find ortonormal basis of $\mathcal{L}(\mathcal{H}_1)$ w.r.t. this inner product.

(c) Argue that ρ_1 is a unique choice which makes (a) hold for any measurement M of the form $M = M_1 \otimes I$. *Hint:* Consider a general mapping $f : \mathcal{L}(\mathcal{H}) \to \mathcal{L}(\mathcal{H}_1)$ that sends the states in \mathcal{H} into the states in \mathcal{H}_1 . Expand $f(\rho)$ by using the inner product of (b).

- What is the physical meaning of this exercise?