Quantum Probability: Exercise set (4+5) (3.3.2010)

Unless otherwise stated, \mathcal{H} denotes a complex separable Hilbert space with an innerproduct (x, y) and a norm $\|x\|=\sqrt{(x, x)}$. We denote by $\mathcal{F}_{ \pm}$the bosonic $(+)$and fermionic $(-)$Fock spaces. We write $[A, B]:=A B-B A$ and $\{A, B\}:=A B+B A$ for operators A, B. Denote by $\mathcal{L}(X)$ the set of linear operators $A: X \rightarrow X$.

1. (a) Prove that $\|x+y\|^{2}+\|x-y\|^{2}=2\|x\|^{2}+2\|y\|^{2}$ for all $x, y \in \mathcal{H}$.
(b) Express the inner product (x, y) for general $x, y \in \mathcal{H}$ in terms the norms $\|z\|=$ (z, z) where $z \in \mathcal{H}$ is a function of x, y. This shows that the inner product is completely determined by the norm $\|\bullet\|$.
2. (a) Show that for any $a(x): P_{ \pm} \mathcal{H}^{n} \rightarrow P_{ \pm} \mathcal{H}^{n-1}, x \in \mathcal{H}$ and $n \in \mathbb{N}$.
(b) Set $a_{ \pm}^{*}(x):=P_{ \pm} a^{*}(x)$. Show that $a_{ \pm}^{*}(x): P_{ \pm} \mathcal{H}^{n} \rightarrow P_{ \pm} \mathcal{H}^{n+1}$
3. Show that $\left\{a_{-}(x), a_{-}^{*}(y)\right\}=(x, y) I$.
4. Denote $\|A\|_{X \rightarrow Y}:=\sup \left\{\|A x\|_{Y}: x \in X,\|x\|_{X} \leq 1\right\}$. Show that:
(a) $\|a(x)\|_{\mathcal{H}^{n} \rightarrow \mathcal{H}^{n-1}} \leq \sqrt{n}\|x\|$.
(b) $\left\|a^{*}(x)\right\|_{\mathcal{H}^{n} \rightarrow \mathcal{H}^{n+1}} \leq \sqrt{n+1}\|x\|$.
5. Let A, B be bounded linear operators on \mathcal{H}. Show that

$$
\mathrm{e}^{t A} B \mathrm{e}^{-t A}=B+[A, B]+\frac{[A,[A, B]]}{2!} t^{2}+\frac{[A,[A,[A, B]]]}{3!} t^{3}+\ldots
$$

6. Using the previous exercise prove that $[A,[A, B]]=[B,[A, B]]=0$ implies:

$$
\mathrm{e}^{A+B}=\mathrm{e}^{A} \mathrm{e}^{B} \mathrm{e}^{-\frac{1}{2}[A, B]}
$$

7. Tensor product $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ can be considered as the set of equivalence classes in $\mathcal{H}:=\mathcal{H}_{1} \times \mathcal{H}_{2}$ such that $x \otimes y:=\{(z, w) \in \mathcal{H}: L(z, w)=L(x, y)$ for all bilinear forms $L: \mathcal{H} \rightarrow \mathbb{C}\}$. If $A_{k} \in \mathcal{L}\left(\mathcal{H}_{k}\right), k=1,2$, then $A_{1} \otimes A_{2} \in \mathcal{L}\left(\mathcal{H}_{1} \otimes \mathcal{H}_{2}\right)$ is defined by $\left(A_{1} \otimes A_{2}\right)\left(x_{1} \otimes x_{2}\right)=$ $A_{1} x_{1} \otimes A_{2} x_{2}$. Show that:
(a) Tensor product of two self adjoint operators is self adjoint;
(b) Tensor product of two unitary operators is unitary;
(c) Tensor product of two projection operators is projection.
8. Let $\mathcal{H}_{k}, k=1,2$, be finite dimensional. Let ρ be a state (density matrix) on $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2}$. Let M_{1} be a self-adjoint operator on \mathcal{H}_{1} so that $M:=M_{1} \otimes I$ is a self-adjoint operator on \mathcal{H}. Define the partial trace $\operatorname{tr}_{2}: \mathcal{L}(\mathcal{H}) \rightarrow \mathcal{L}\left(\mathcal{H}_{1}\right)$ by first setting $\rho_{2}\left(\alpha_{1} \otimes \alpha_{2}\right):=\operatorname{tr}\left(\alpha_{2}\right) \cdot \alpha_{1}$ for one-dimensional projectors $\alpha_{k}, k=1,2$, and then extending to general $\mathcal{L}(\mathcal{H})$ by linearity.
(a) Show that $\operatorname{tr}(M \rho)=\operatorname{tr}\left(M_{1} \rho_{1}\right)$.
(b) Show that $(A, B):=\operatorname{tr}\left(A^{*} B\right)$ defines an inner product on $\mathcal{L}\left(\mathcal{H}_{1}\right)$ and thus makes $\mathcal{L}\left(\mathcal{H}_{1}\right)$ itself a Hilbert space. Find ortonormal basis of $\mathcal{L}\left(\mathcal{H}_{1}\right)$ w.r.t. this inner product.
(c) Argue that ρ_{1} is a unique choice which makes (a) hold for any measurement M of the form $M=M_{1} \otimes I$. Hint: Consider a general mapping $f: \mathcal{L}(\mathcal{H}) \rightarrow \mathcal{L}\left(\mathcal{H}_{1}\right)$ that sends the states in \mathcal{H} into the states in \mathcal{H}_{1}. Expand $f(\rho)$ by using the inner product of (b).

- What is the physical meaning of this exercise?

