Quantum Probability: Exercise set 3 (17.2.2010) - corrected version

This time it suffices to do only 4 exercises to get full points.

PMJP := "Pure Markov Jump Process"; Let $A \in \mathbb{C}^{n \times p}$. Define $A^{\dagger} \in \mathbb{C}^{p \times n}$ by $A^{\dagger}_{ij} = A^*_{ji}$. Denote $\langle x, y \rangle = \sum_{i=1}^d x_i^* y_i$, for $x, y \in \mathbb{C}^d$.

- 1. (a) Is $\tilde{\tau}: \Omega \to [0,\infty)$ defined by $t + \tilde{\tau} = \inf\{u \ge t : X_u \ne X_0\}$ a stopping time w.r.t. filtration generated by a cadlag process (X_t) ?
 - (b) Suppose X pure jump process. Define $\Delta_t := \max\{u \leq t : \lim_{s \nearrow u} X_s \neq X_u\}$ and assume that $Y_t := (X_t, \Delta_t)$ is Markov. Set $\tau := \inf\{t \geq 0 : X_t \neq X_0\}$. Can one always construct a function λ such that $\mathsf{P}(\tau \geq t | Y_0 = y) = \mathrm{e}^{-\lambda(y)t}$ for every $t \geq 0$? Prove this or provide a counter example.
- 2. (a) Denote $\dot{u} = \frac{\mathrm{d}u}{\mathrm{d}t}$. Find the solution of the one-dimensional ordinary differential equation $\dot{x}(t) = -\alpha x(t) + \dot{f}(t)$ with x(0) = x, where $\alpha > 0$ is a constant and f is some differentiable function on \mathbb{R} .
 - (b) Let $A \in \mathbb{R}^{d \times d}$, $F \in \mathbb{R}^{d \times n}$ be constant matrices, and let (B_t) be a n-dimensional Brownian motion. Show that $dX_t = -AX_t + FdB_t$, $X_0 = x \in \mathbb{R}^d$ is solved by

$$X_t = e^{-tA}x + \int_0^t e^{-(t-s)A}F dB_s.$$

Hint: Argue that (X_t) is Gaussian and consider 2-point correlations. You may also assume that d = 1 if you wish to avoid clutter.

- (c) What happens in (b) if A is positive definite, i.e., $x^{T}Ax > 0$ for every $x \neq 0$.
- 3. Let X be a Gaussian on \mathbb{C}^d such that $C = \mathsf{E}(XX^\dagger)$ is positive matrix. Calculate $W(\lambda) := \mathsf{E}\mathrm{e}^{\mathrm{i}\langle\lambda,X\rangle}$.
- 4. Let (X_t^1) and (X_t^2) be independent PMJP:s on \mathbb{R} with jump rates μ^1 and μ^2 , respectively. Define (X_t) on \mathbb{R}^2 and (Y_t) on \mathbb{R} by setting $X_t = (X_t^1, X_t^2)$ and $Y_t := X_t^1 + X_t^2$, respectively. Let P_t and Q_t be the Markov transition kernels of X and Y, respectively.
 - (a) Are X and Y are also PMJP:s?
 - (b) Express transition probabilities $P_t(x, \{x\})$ and $P_t(x, B)$, $x \notin B$ in the first order of t as $t \to 0$.
 - (c) Suppose $\mu^k(x, dy) = f_k(y x)dy$ for k = 1, 2. Repeat (b) with P_t replaced by Q_t .
- 5. Let (X_t) be PMJP on \mathbb{Z} , such that $p(n,m) = p\delta_{m,n+1} + (1-p-q)\delta_{n,m} + q\delta_{m,n-1}$, where p, q > 0 and $\lambda(x) = \lambda > 0$ are constants and $p + q \leq 1$. (a) Find the generator A of X. (b) Calculate the semigroup e^{tA} of X: $(e^{tA}u)(x) = \mathsf{E}_x u(X_t)$.