Quantum Probability: Exercise set 3 (17.2.2010) - corrected version

This time it suffices to do only 4 exercises to get full points.
PMJP := "Pure Markov Jump Process";
Let $A \in \mathbb{C}^{n \times p}$. Define $A^{\dagger} \in \mathbb{C}^{p \times n}$ by $A_{i j}^{\dagger}=A_{j i}^{*}$. Denote $\langle x, y\rangle=\sum_{i=1}^{d} x_{i}^{*} y_{i}$, for $x, y \in \mathbb{C}^{d}$.

1. (a) Is $\tilde{\tau}: \Omega \rightarrow[0, \infty)$ defined by $t+\tilde{\tau}=\inf \left\{u \geq t: X_{u} \neq X_{0}\right\}$ a stopping time w.r.t. filtration generated by a cadlag process $\left(X_{t}\right)$?
(b) Suppose X pure jump process. Define $\Delta_{t}:=\max \left\{u \leq t: \lim _{s} / u X_{s} \neq X_{u}\right\}$ and assume that $Y_{t}:=\left(X_{t}, \Delta_{t}\right)$ is Markov. Set $\tau:=\inf \left\{t \geq 0: X_{t} \neq X_{0}\right\}$. Can one always construct a function λ such that $\mathrm{P}\left(\tau \geq t \mid Y_{0}=y\right)=\mathrm{e}^{-\lambda(y) t}$ for every $t \geq 0$? Prove this or provide a counter example.
2. (a) Denote $\dot{u}=\frac{\mathrm{d} u}{\mathrm{~d} t}$. Find the solution of the one-dimensional ordinary differential equation $\dot{x}(t)=-\alpha x(t)+\dot{f}(t)$ with $x(0)=x$, where $\alpha>0$ is a constant and f is some differentiable function on \mathbb{R}.
(b) Let $A \in \mathbb{R}^{d \times d}, F \in \mathbb{R}^{d \times n}$ be constant matrices, and let $\left(B_{t}\right)$ be a n-dimensional Brownian motion. Show that $\mathrm{d} X_{t}=-A X_{t}+F \mathrm{~d} B_{t}, X_{0}=x \in \mathbb{R}^{d}$ is solved by

$$
X_{t}=\mathrm{e}^{-t A} x+\int_{0}^{t} \mathrm{e}^{-(t-s) A} F \mathrm{~d} B_{s}
$$

Hint: Argue that $\left(X_{t}\right)$ is Gaussian and consider 2-point correlations. You may also assume that $d=1$ if you wish to avoid clutter.
(c) What happens in (b) if A is positive definite, i.e., $x^{\mathrm{T}} A x>0$ for every $x \neq 0$.
3. Let X be a Gaussian on \mathbb{C}^{d} such that $C=\mathrm{E}\left(X X^{\dagger}\right)$ is positive matrix. Calculate $W(\lambda):=$ $E e^{i\langle\lambda, X\rangle}$.
4. Let $\left(X_{t}^{1}\right)$ and $\left(X_{t}^{2}\right)$ be independent PMJP:s on \mathbb{R} with jump rates μ^{1} and μ^{2}, respectively. Define $\left(X_{t}\right)$ on \mathbb{R}^{2} and $\left(Y_{t}\right)$ on \mathbb{R} by setting $X_{t}=\left(X_{t}^{1}, X_{t}^{2}\right)$ and $Y_{t}:=X_{t}^{1}+X_{t}^{2}$, respectively. Let P_{t} and Q_{t} be the Markov transition kernels of X and Y, respectively.
(a) Are X and Y are also PMJP:s?
(b) Express transition probabilities $P_{t}(x,\{x\})$ and $P_{t}(x, B), x \notin B$ in the first order of t as $t \rightarrow 0$.
(c) Suppose $\mu^{k}(x, \mathrm{~d} y)=f_{k}(y-x) \mathrm{d} y$ for $k=1,2$. Repeat (b) with P_{t} replaced by Q_{t}.
5. Let $\left(X_{t}\right)$ be PMJP on \mathbb{Z}, such that $p(n, m)=p \delta_{m, n+1}+(1-p-q) \delta_{n, m}+q \delta_{m, n-1}$, where $p, q>0$ and $\lambda(x)=\lambda>0$ are constants and $p+q \leq 1$. (a) Find the generator A of X. (b) Calculate the semigroup $\mathrm{e}^{t A}$ of $X:\left(\mathrm{e}^{t A} u\right)(x)=\mathrm{E}_{x} u\left(X_{t}\right)$.

