Quantum Probability: Exercise set 2 (10.2.2010)

We denote $\mathbb{R}_+ := [0, \infty)$. A process $(X_t : t \in \mathbb{R}_+)$ is denoted by (X_t) or simply X. As usual we assume everything is defined on a probability space $(\Omega, \Sigma, \mathsf{P})$ unless otherwise stated. A sequence $\mathbb{F} = (\mathcal{F}_t : t \in \mathbb{R}_+)$ of sub- σ -algebras of Σ that is increasing w.r.t. time, i.e., $\mathcal{F}_s \subset \mathcal{F}_t$ for $s \leq t$, is called a filtration. If (X_t) satisfies $\sigma(X_t) \subset \mathcal{F}_t$ for every $t \geq 0$ then we say that (X_t) is adapted to \mathbb{F} . A d-dimensional Brownian Motion, is a process (B_t) on \mathbb{R}^d where each component $B^j = (B_t^j : t \in \mathbb{R}_+)$ is an independent (1-dimensional) Brownian Motion (BM).

- 1. By using Kolmogorov's continuity theorem and the finite dimensional distributions of BM, show that there exists a continuous version of BM.
- 2. Suppose $\lambda > 0$ is a constant and (B_t) is a BM. (a) Show the process (X_t) defined by $X_t := \lambda^{-1} B_{\lambda^2 t}$ is also BM; (b) calculate the correlation $\mathsf{E}(X_s B_t)$.
- 3. Let B be a BM. (a) Prove directly from the definition of Ito-integral that

$$\int_0^t B_s^2 dB_s = \frac{1}{3} B_t^3 - \int_0^t B_s ds.$$

- (b) Verify this by applying Ito-chain rule to the right side.
- 4. Let $|\bullet|$ be a Euclidean norm in \mathbb{R}^d and B a d-dimensional BM. Find the stochastic differential equation (SDE) satisfied by (X_t) when $X_t := |B_t|$.
- 5. Let B be a d-dimensional \mathbb{F} -adapted BM. Let (U_t) be a $\mathbb{R}^{d \times d}$ -matrix valued \mathbb{F} -adapted continuous stochastic process that satisfies $\mathsf{P}\big[U_tU_t^{\mathrm{T}}=I\big]=1$ for every $t\in\mathbb{R}_+$, where I is the identity matrix. Define $X_t=(X_t^1,\ldots,X_t^d)$ by setting $\mathrm{d}X_t^i=\sum_j U_t^{ij}\mathrm{d}B_t^j,\ X_0=0$. Prove that $\mathsf{E}(X_t)=0$ and $\mathsf{E}(X_tX_t^{\mathrm{T}})=tI$ by using the fact that $\mathsf{E}(\int_0^t A_s\mathrm{d}B_s)=0$ for all \mathbb{F} -adapted processes encountered here (technically speaking A should be, for example, a previsible process). By using Lévi-characterization of BM one can use this result to show that X is also a d-dimensional BM.
- 6. Let $X=(X_t)$ be a time-homogenous Markov process on some domain $D \subset \mathbb{R}^d$. Suppose ν is the stationary measure of X, i.e., $S_t\nu=\nu$, where S_t is the dual operator of T_t , i.e., $Tu(x)=\int_D p_t(x,\mathrm{d}y)(y)$ and $S\mu=\int_D \mu(\mathrm{d}x)p_t(x,\bullet)$. Now, suppose that X is time-reversible, i.e., if X starts from its stationary distribution $\mathsf{P}(X_0\in\mathrm{d}x)=\nu(\mathrm{d}x)$ then $\mathsf{P}(X_{t_1}\in B_1,\ldots,X_{t_k}\in B_k)=\mathsf{P}(X_{T-t_k}\in B_k,\ldots,X_{T-t_1}\in B_1)$ for any times $0\leq t_{i-1}\leq t_i\leq T<\infty$ and Borel sets $B_j,\,k\in\mathbb{N}$.
 - (a) Define an inner product $(u, v)_{\mu} := \int_{D} u(x)v(x)\mu(\mathrm{d}x)$ w.r.t. a positive measure μ . Show that time reversibility of X implies that the generator

$$Lu := \lim_{\tau \to 0} \frac{1}{\tau} (T_{\tau}u - u),$$

must be self adjoint w.r.t. invariant measure ν , i.e., $(u, Lv)_{\nu} = (Lu, v)_{\nu}$.

- (b) Now, let $D = \mathbb{R}^1$ and suppose that X satisfies SDE: $dX_t = b(X_t)dt + \gamma(X_t)dW_t$. What conditions must $b, \gamma : \mathbb{R} \to \mathbb{R}$ satisfy for X to be time reversible w.r.t. Lebesgue measure (note that this is not a probability measure).
- (c) What has this exercise to do with thermodynamics? (this is for physicists).