Quantum Probability: Exercise set 2 (10.2.2010)

We denote $\mathbb{R}_{+}:=[0, \infty)$. A process $\left(X_{t}: t \in \mathbb{R}_{+}\right)$is denoted by $\left(X_{t}\right)$ or simply X. As usual we assume everything is defined on a probability space $(\Omega, \Sigma, \mathrm{P})$ unless otherwise stated. A sequence $\mathbb{F}=\left(\mathcal{F}_{t}: t \in \mathbb{R}_{+}\right)$of sub- σ-algebras of Σ that is increasing w.r.t. time, i.e., $\mathcal{F}_{s} \subset \mathcal{F}_{t}$ for $s \leq t$, is called a filtration. If $\left(X_{t}\right)$ satisfies $\sigma\left(X_{t}\right) \subset \mathcal{F}_{t}$ for every $t \geq 0$ then we say that $\left(X_{t}\right)$ is adapted to \mathbb{F}. A d-dimensional Brownian Motion, is a process $\left(B_{t}\right)$ on \mathbb{R}^{d} where each component $B^{j}=\left(B_{t}^{j}: t \in \mathbb{R}_{+}\right)$is an independent (1-dimensional) Brownian Motion (BM).

1. By using Kolmogorov's continuity theorem and the finite dimensional distributions of BM, show that there exists a continuous version of BM.
2. Suppose $\lambda>0$ is a constant and $\left(B_{t}\right)$ is a BM. (a) Show the process $\left(X_{t}\right)$ defined by $X_{t}:=\lambda^{-1} B_{\lambda^{2} t}$ is also BM ; (b) calculate the correlation $\mathrm{E}\left(X_{s} B_{t}\right)$.
3. Let B be a BM. (a) Prove directly from the definition of Ito-integral that

$$
\int_{0}^{t} B_{s}^{2} \mathrm{~d} B_{s}=\frac{1}{3} B_{t}^{3}-\int_{0}^{t} B_{s} \mathrm{~d} s
$$

(b) Verify this by applying Ito-chain rule to the right side.
4. Let $|\bullet|$ be a Euclidean norm in \mathbb{R}^{d} and B a d-dimensional BM. Find the stochastic differential equation (SDE) satisfied by $\left(X_{t}\right)$ when $X_{t}:=\left|B_{t}\right|$.
5. Let B be a d-dimensional \mathbb{F}-adapted BM. Let $\left(U_{t}\right)$ be a $\mathbb{R}^{d \times d}$-matrix valued \mathbb{F}-adapted continuous stochastic process that satisfies $\mathrm{P}\left[U_{t} U_{t}^{\mathrm{T}}=I\right]=1$ for every $t \in \mathbb{R}_{+}$, where I is the identity matrix. Define $X_{t}=\left(X_{t}^{1}, \ldots, X_{t}^{d}\right)$ by setting $\mathrm{d} X_{t}^{i}=\sum_{j} U_{t}^{i j} \mathrm{~d} B_{t}^{j}, X_{0}=0$. Prove that $\mathrm{E}\left(X_{t}\right)=0$ and $\mathrm{E}\left(X_{t} X_{t}^{\mathrm{T}}\right)=t I$ by using the fact that $\mathrm{E}\left(\int_{0}^{t} A_{s} \mathrm{~d} B_{s}\right)=0$ for all \mathbb{F}-adapted processes encountered here (technically speaking A should be, for example, a previsible process). By using Lévi-characterization of BM one can use this result to show that X is also a d-dimensional BM.
6. Let $X=\left(X_{t}\right)$ be a time-homogenous Markov process on some domain $D \subset \mathbb{R}^{d}$. Suppose ν is the stationary measure of X, i.e., $S_{t} \nu=\nu$, where S_{t} is the dual operator of T_{t}, i.e., $T u(x)=\int_{D} p_{t}(x, \mathrm{~d} y)(y)$ and $S \mu=\int_{D} \mu(\mathrm{~d} x) p_{t}(x, \bullet)$. Now, suppose that X is timereversible, i.e., if X starts from its stationary distribution $\mathrm{P}\left(X_{0} \in \mathrm{~d} x\right)=\nu(\mathrm{d} x)$ then $\mathrm{P}\left(X_{t_{1}} \in B_{1}, \ldots, X_{t_{k}} \in B_{k}\right)=\mathrm{P}\left(X_{T-t_{k}} \in B_{k}, \ldots, X_{T-t_{1}} \in B_{1}\right)$ for any times $0 \leq t_{i-1} \leq$ $t_{i} \leq T<\infty$ and Borel sets $B_{j}, k \in \mathbb{N}$.
(a) Define an inner product $(u, v)_{\mu}:=\int_{D} u(x) v(x) \mu(\mathrm{d} x)$ w.r.t. a positive measure μ. Show that time reversibility of X implies that the generator

$$
L u:=\lim _{\tau \searrow 0} \frac{1}{\tau}\left(T_{\tau} u-u\right)
$$

must be self adjoint w.r.t. invariant measure ν, i.e., $(u, L v)_{\nu}=(L u, v)_{\nu}$.
(b) Now, let $D=\mathbb{R}^{1}$ and suppose that X satisfies SDE: $\mathrm{d} X_{t}=b\left(X_{t}\right) \mathrm{d} t+\gamma\left(X_{t}\right) \mathrm{d} W_{t}$. What conditions must $b, \gamma: \mathbb{R} \rightarrow \mathbb{R}$ satisfy for X to be time reversible w.r.t. Lebesgue measure (note that this is not a probability measure).
(c) What has this exercise to do with thermodynamics? (this is for physicists).

