Quantum Probability: exercise session 1 (for session on 3.2.2010)

Don't mind too much if you are not sure about all the details!

Typically the abstract probability space is denoted by $(\Omega, \mathcal{F}, \mathsf{P})$. Unless otherwise stated, we assume that a r.v. $X \to S$, where S is a metric space, is measurable w.r.t. Borel σ algebra $\mathcal{B}(S)$ corresponding the metric topology of S, i.e., $X^{-1}(B) \in \mathcal{F}$ for any $B \in \mathcal{B}(S)$. Note that there are many ways to write the same things:

$$\mathsf{P}_X(A) \equiv \mathsf{P} \circ X^{-1}(A) \equiv \mathsf{P}(X \in A) \equiv \mathsf{P}(\{\omega \in \Omega : X(\omega) \in A\}).$$

Recall also that $\sigma(X) := \{X^{-1}(B) : B \in \mathcal{B}(S)\}$. Since E is a linear operator we often drop the parenthesis, e.g., $\mathsf{E}u(X) \equiv \mathsf{E}[u(X)] \equiv \int_{\Omega} u(X(\omega))\mathsf{P}(\mathrm{d}\omega)$. We denote by χ_A the indicator function the event A, e.g., $\chi_A : \Omega \to \{0,1\}$ with $\chi_A(\omega) = 1$ if and only if $\omega \in A$.

- 1. Let $f: S \to T$ be an arbitrary function between two sets S and T. Recall, that $f^{-1}(B) := \{s \in S : f(s) \in B\}$, for $B \subset T$. Proof that f^{-1} preserves the set operations in the sense that for any subsets B and B_k of T the following hold: (a) $f^{-1}(B^c) = (f^{-1}(B))^c$; (b) $f^{-1}(\bigcup_k B_k) = \bigcup_k f^{-1}(B_k)$; (c) $f^{-1}(\bigcap_k B_k) = \bigcap_k f^{-1}(B_k)$.
- 2. Let $\{\mathcal{G}_{\alpha} : \alpha \in A\}$ be a family of σ -algebras. Show that $\mathcal{G} := \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$ is σ -algebra. This result implies that $\sigma(X)$, the smallest σ -algebra, in which r.v. X is measurable always exists.
- 3. Let \mathcal{R} be a finite partition of Ω . Let \mathcal{G} consists of the empty set \emptyset , and all possible unions of $R \in \mathcal{R}$. Show that (a) \mathcal{G} is a σ -algebra; (b) Any finite σ -algebra is of this type; (c) Let $X : \Omega \to \mathbb{R}$ be \mathcal{G} -measurable r.v. Proof that X can take only finitely many values $\{x_j : 1 \leq j \leq N\} \subset \mathbb{R}, N \in \mathbb{N}$, and express X is terms of $\chi_G, G \in \mathcal{G}$.
- 4. Let X, Y be random variables. (a) Suppose they both can take only finitely many values. Express $\sigma(X, Y)$ in terms of the elements of $\sigma(X)$ and $\sigma(Y)$. (b) Now, suppose X is general, but Y can take finitely many values. Write $\mathsf{E}(X|Y) := \mathsf{E}(X|\sigma(Y))$ as a deterministic function f(Y) of Y.
- 5. (a) Suppose $\phi : \mathbb{R} \to \mathbb{R}_+$ is increasing function. Proof that for \mathbb{R} -valued r.v. X one has:

$$\mathsf{P}(X \ge x) \le \frac{\mathsf{E}\phi(X)}{\phi(x)}$$
 for every $x \in \mathbb{R}$.

(b) Assume that $\mathsf{E}e^{\alpha|X|} < \infty$, for some $\alpha > 0$. Show that $\mathsf{P}(|X| \ge r) \le Me^{\lambda r}$, for some $M < \infty$.

- 6. Construct random variables X, Y, Z such that the pairs $\{X, Y\}, \{X, Z\}$ and $\{Y, Z\}$ are independent, but $\{X, Y, Z\}$ are not independent.
- 7. Suppose \mathcal{G} is a sub- σ -algebra of \mathcal{F} , and two random variables satisfy $\mathsf{E}|XY| < \infty$. Show that (a) if X is \mathcal{G} -measurable then $\mathsf{E}(XY|\mathcal{G}) = X\mathsf{E}(Y|\mathcal{G})$; (b) if X is independent of \mathcal{G} then $\mathsf{E}(X|\mathcal{G}) = \mathsf{E}X$; (c) if $\tilde{\mathcal{G}} \subset \mathcal{G}$ is another coarser sub- σ -algebra then $\mathsf{E}(X|\tilde{\mathcal{G}}) = \mathsf{E}(\mathsf{E}(X|\mathcal{G})|\tilde{\mathcal{G}})$. *Hint:* Use simple functions.