Quantum Probability: solutions for exercise set 1

Typically the abstract probability space is denoted by $(\Omega, \mathcal{F}, \mathsf{P})$. Unless otherwise stated, we assume that a r.v. $X \to S$, where S is a metric space, is measurable w.r.t. Borel σ algebra $\mathcal{B}(S)$ corresponding the metric topology of S, i.e., $X^{-1}(B) \in \mathcal{F}$ for any $B \in \mathcal{B}(S)$. Note that there are many ways to write the same things:

$$\mathsf{P}_X(A) \equiv \mathsf{P} \circ X^{-1}(A) \equiv \mathsf{P}(X \in A) \equiv \mathsf{P}(\{\omega \in \Omega : X(\omega) \in A\}).$$

Recall also that $\sigma(X) := \{X^{-1}(B) : B \in \mathcal{B}(S)\}$. Since E is a linear operator we often drop the parenthesis, e.g., $\mathsf{E}u(X) \equiv \mathsf{E}[u(X)] \equiv \int_{\Omega} u(X(\omega))\mathsf{P}(\mathrm{d}\omega)$. We denote by χ_A the indicator function the event A, e.g., $\chi_A : \Omega \to \{0,1\}$ with $\chi_A(\omega) = 1$ if and only if $\omega \in A$.

Question 1.1: Let $f: S \to T$ be an arbitrary function between two sets S and T. Recall, that $f^{-1}(B) := \{s \in S : f(s) \in B\}$, for $B \subset T$. Proof that f^{-1} preserves the set operations in the sense that for any subsets B and B_k of T the following hold: (a) $f^{-1}(B^c) = (f^{-1}(B))^c$; (b) $f^{-1}(\cup_k B_k) = \cup_k f^{-1}(B_k)$; (c) $f^{-1}(\cap_k B_k) = \cap_k f^{-1}(B_k)$.

Answer 1.1: The function f induces the map $f^{-1}: 2^T \to 2^S$, where 2^S means the family of all the subsets of S. (a) Directly from the definitions:

$$f^{-1}(B^{c}) = \{s : f(s) \in B^{c}\} = \{s : f(s) \notin B\} = \{s : f(s) \in B\}^{c} = [f(B)]^{c}.$$

(b) Let I denote the index set that may be uncountable. Then, again directly from the definitions:

$$f^{-1}(\cup_k B_k) = \{s : f(s) \in \cup_k B_k\} = \{s : \exists k \in I \text{ s.t. } f(s) \in B_k\} = \bigcup_k \{s : f(s) \in B_k\} = \bigcup_k f^{-1}(B_k).$$

(c) can be done just like (b). One can also do it by writing $\cap_k B_k = (\cup_k B_k^c)^c$, and then using parts (a) and (b).

Question 1.2: Let $\{\mathcal{G}_{\alpha} : \alpha \in A\}$ be a family of σ -algebras. Show that $\mathcal{G} := \bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$ is σ -algebra. This result implies that $\sigma(X)$, the smallest σ -algebra, in which r.v. X is measurable always exists.

Answer 1.2: One has to show that \mathcal{G} satisfies the three properties (i-iii) of a σ -algebra, namely that (i) $\emptyset \in \mathcal{G}$, (ii) $G \in \mathcal{G}$ implies $G^c \in \mathcal{G}$, (iii) $(G_j)_{j \in \mathbb{N}} \subset \mathcal{G}$ implies $\bigcup_{j \in \mathbb{N}} G_j \in \mathcal{G}$. To see that these hold, write

$$\mathcal{G} = \{ G : G \in \mathcal{G}_{\alpha} \text{ for every } \alpha \in A \}.$$

$$(0.1)$$

Since \mathcal{G}_{α} is a σ -algebra, $\emptyset \in \mathcal{G}_{\alpha}$ for every $\alpha \in A$. Now, let $G, G_j \in \mathcal{G}$ be arbitrary. By (0.1) $G^{c}, \cup_{j} G_{j} \in \mathcal{G}_{\alpha}$ for every α . Thus (0.1) implies that $\emptyset, G^{c}, \cup_{j} G_{j} \in \mathcal{G}$ and thus we have shown that \mathcal{G} is a σ -algebra.

Question 1.3: Let \mathcal{R} be a finite partition of Ω . Let \mathcal{G} consists of the empty set \emptyset , and all possible unions of $R \in \mathcal{R}$. Show that (a) \mathcal{G} is a σ -algebra; (b) Any finite σ -algebra is of this type; (c) Let $X : \Omega \to \mathbb{R}$ be \mathcal{G} -measurable r.v. Prove that X can take only finitely many values $\{x_j : 1 \leq j \leq m\} \subset \mathbb{R}, m \in \mathbb{N}, and express X is terms of <math>\chi_G, G \in \mathcal{G}$.

Answer 1.3:

(a) We must show that properties (i-iii) of σ -algebra listed in exercise 1.2 hold. Let $\mathcal{R} = \{R_j : j = 1, \ldots, n\}$, so that $|\mathcal{R}| = n$. By definition a general element $G \in \mathcal{G}$ is of the form

 $G = \bigcup_{i \in I} R_i$, with $I \subset \{1, \ldots, n\}$ or $I = \emptyset$. Now, (i) is obviously true. To show (ii) we write $G^c = \Omega \setminus G = (\bigcup_{i=1}^n R) \setminus (\bigcup_{i \in I} R_i) = \bigcup_{i \in I^c} R_i$ with $I^c := \{1, \ldots, n\} \setminus I$. But this means $G^c \in \mathcal{G}$. To show (iii) we take an arbitrary sequence of sets G_j and write $\bigcup_{j \in \mathbb{N}} G_j = \bigcup_{j \in \mathbb{N}} \bigcup_{i_j \in I_j} R_{i_j} = \bigcup_{i \in (\cup_i I_j)} R_i$, which is clearly an element of \mathcal{G} .

(b) Let \mathcal{F} be a finite σ -algebra. Set

$$\mathcal{R} := \left\{ R \in \mathcal{F} \setminus \{ \emptyset \} : \nexists F \in \mathcal{F} \setminus \{ \emptyset, R \} \text{ s.t. } F \subset R \right\}.$$

This is the partition we are looking for. First, it is clearly finite as $\mathcal{R} \subset \mathcal{F}$. Moreover, it is obviously a partition. We have $\tilde{\Omega} := \bigcup \{R : R \in \mathcal{R}\} = \Omega$ since otherwise $F := \Omega \setminus \tilde{\Omega} \in \mathcal{F} \setminus \{\emptyset\}$ and thus there would have to exist $\tilde{R} \subset F$ such that \tilde{R} is nonempty and not contained in any $F \in \mathcal{F}$ other than itself. But this would imply $\tilde{R} \in \mathcal{R}$ which is a contradiction. This shows that one must have $\tilde{\Omega} = \Omega$. Finally, if $R_1, R_2 \in \mathcal{R}$ are distict elements then $R_1 \cap R_2 \neq \emptyset$. For if $R := R_1 \cap R_2 \in \mathcal{F} \setminus \{\emptyset\}$ then $R \subset R_1$ and $R \subset R_2$ and consequently either R_1 or R_2 could not belong into \mathcal{R} resulting in the contradiction (note: it could be that $R = R_1$ or $R = R_2$ but not both at the same time).

(c) Let $n = |\mathcal{G}| < \infty$. Write $X(\Omega) = \{x_j : 1 \le j \le m\}$ with $x_i \ne x_j$ for $i \ne j$. Since X is measurable w.r.t. \mathcal{G} the sets $R_j := X^{-1}(\{x_j\}), 1 \le j \le m$ form a measurable partition $\mathcal{R} := \{R_j : 1 \le j \le m\} \subset \mathcal{F}$ of Ω . Thus $|X(\Omega)| \equiv m \le n$. By definition we have $X(\omega) = \sum_{j=1}^m x_j \cdot \chi_{R_j}(\omega)$.

Question 1.4: Let X, Y be random variables. (a) Suppose they both can take only finitely many values. Express $\sigma(X, Y)$ in terms of the elements of $\sigma(X)$ and $\sigma(Y)$. (b) Now, suppose X is general, but Y can take finitely many values. Write $\mathsf{E}(X|Y) := \mathsf{E}(X|\sigma(Y))$ as a deterministic function f(Y) of Y.

Answer 1.4: (a) Let $\mathcal{R} = \{R_i : i \leq m\}$ and $\mathcal{S} = \{S_j : j \leq n\}$ be the generating partitions of σ -algebras $\sigma(A)$ and $\sigma(Y)$ respectively. Then $\sigma(X, Y)$ consists of \emptyset and all the possible unions of the partition $\{R_i \cap S_j : 1 \leq i \leq m, 1 \leq j \leq n\}$.

(b) By considering the partition that generates $\sigma(Y)$ it is easy to show that

$$Z = \sum_{y \in Y(\Omega)} \frac{\mathsf{E}(\chi_{\{Y=y\}}X)}{\mathsf{P}(Y=y)} \mathbf{1}_{\{Y=y\}} = \sum_{j=1}^{n} \alpha_j \chi_{B_j}(y)$$

where $Y(\Omega) = \{y_1, \ldots, y_n\}$ $B_j := \{y_j\}$ and $\alpha_j := \mathsf{E}(\chi_{\{Y=y_j\}}X)/\mathsf{P}(Y=y_j)$, is the conditional expectation $\mathsf{E}(X|Y)$. In other words, $\mathsf{E}[X|Y](\omega) = f(Y(\omega))$ with $f = \sum_{j=1}^n \alpha_j \chi_{B_j}$. Notice that $\chi_B(Y(\omega)) = 1$ if and only if $Y(\omega) \in B$ or in other words $\omega \in Y^{-1}(B)$. This gives $\chi_B(Y) = 1_{Y^{-1}(B)}$.

Question 1.5: (a) Suppose $\phi : \mathbb{R} \to \mathbb{R}_+$ is increasing function. Proof that for \mathbb{R} -valued r.v. X one has:

$$\mathsf{P}(X \ge x) \le \frac{\mathsf{E}\phi(X)}{\phi(x)}$$
 for every $x \in \mathbb{R}$.

(b) Assume that $\mathsf{E}e^{\alpha|X|} < \infty$, for some $\alpha > 0$. Show that $\mathsf{P}(|X| \ge r) \le Me^{-\lambda r}$, for some $0 < \lambda, M < \infty$.

Answer 1.5: (a) The starting point for the proof is the basic equality $\mathsf{P}(A) = \mathsf{E}(1_A)$ valid for any $A \in \mathcal{F}$. Now, let's choose $A = \{X \ge x\}$. Since x < y implies $\phi(x) < \phi(y)$, we have $A = \{\phi(X) \ge \phi(x)\}$ and therefore we may approximate:

$$1_{A}(\omega) \leq \frac{\phi(X(\omega))}{\phi(x)} 1_{A}(\omega) + 0 \cdot 1_{A^{c}}(\omega)$$

$$\leq \frac{\phi(X(\omega))}{\phi(x)} 1_{A}(\omega) + \frac{\phi(X(\omega))}{\phi(x)} 1_{A^{c}}(\omega) = \frac{\phi(X(\omega))}{\phi(x)},$$

where we have used the partition of identity $1 = 1_A(\omega) + 1_{A^c}(\omega)$. Notice also that positivity of ϕ has been used to write $\phi(X)/\phi(x) \ge 0$. Taking expectations can comparing the left and right most expressions gives now the bound.

(b) Choose $\phi(x) := e^{\lambda x}$, $\lambda \in (0, \alpha]$ and Y := |X|. Then (a) yields $\mathsf{P}(|X| \ge r) = \mathsf{P}(Y \ge y) \le M e^{-\alpha r}$ with $M = \mathsf{E} e^{\lambda Y} \le \mathsf{E} e^{\alpha |X|}$.

Question 1.6: Construct random variables X, Y, Z such that the pairs $\{X, Y\}, \{X, Z\}$ and $\{Y, Z\}$ are independent, but $\{X, Y, Z\}$ are not independent.

Answer 1.6: Independence means that $P(X \in A, Y \in B, Z \in C) = P(X \in A)P(Y \in B)P(Z \in C)$ for any proper measurable sets A, B, C. Perhaps simplest answer to this question is the following: Let $X, Y, Z : \Omega \to \{-1, 1\}$. Let X, Y be identical but independent random variables such that $P(X = \pm 1) = 1/2$. Now set Z := XY. Clearly, by symmetry $P(Z = \pm 1) = 1/2$. Moreover, P(X = a, Z = b) = P(X = a, XY = b) = P(X = a, Y = b/a) = P(X = a)P(Y = b/a) = 1/4 = P(X = a)P(Z = b) for any $a, b \in \{-1, 1\}$. It then follows easily that $P(X_1 \in A, X_2 \in B) = P(X_1 \in A)P(X_2 \in B)$ for any $\{X_1, X_2\} \subset \{X, Y, Z\}, X_1 \neq X_2$. Similarly, one obtains P(Y = a, Z = b) = P(Y = a)P(Z = b). However, X, Y, Z are not independent as $P(X = a, Y = b, Z = -ab) = 0 \neq 1/8 = P(X = a)P(Y = b)P(Z = -ab)$ shows.

Question 1.7: Suppose \mathcal{G} is a sub- σ -algebra of \mathcal{F} , and two random variables satisfy $\mathsf{E}|XY| < \infty$. Show that (a) if X is \mathcal{G} -measurable then $\mathsf{E}(XY|\mathcal{G}) = X\mathsf{E}(Y|\mathcal{G})$; (b) if X is independent of \mathcal{G} then $\mathsf{E}(X|\mathcal{G}) = \mathsf{E}X$; (c) if $\tilde{\mathcal{G}} \subset \mathcal{G}$ is another coarser sub- σ -algebra then $\mathsf{E}(X|\tilde{\mathcal{G}}) = \mathsf{E}(\mathsf{E}(X|\mathcal{G})|\tilde{\mathcal{G}})$. Hint: Use simple functions.

Answer 1.7: Actually the hint here is a bit misleading. Simple functions are only used in the proof of (a). Let us do (b-c) first.

(b) Let X be independent of \mathcal{G} so that $\mathsf{E}(1_G X) = \mathsf{E}(X)\mathsf{E}(1_G)$. But this implies $\mathsf{E}(1_G \mathsf{E}[X|\mathcal{G}]) = \mathsf{E}(1_G X) = \mathsf{E}(1_G) \cdot \mathsf{E}(X) = \mathsf{E}\{1_G \mathsf{E}(X)\}.$

(c) Take $\tilde{G} \in \tilde{\mathcal{G}} \subset \mathcal{G}$. By using the definition of conditional expectations we get:

$$\int_{\tilde{G}} \mathsf{E}[\mathsf{E}(X|\mathcal{G})|\tilde{\mathcal{G}}] \mathrm{d}\mathsf{P} = \int_{\tilde{G}} \mathsf{E}(X|\mathcal{G}) \mathrm{d}\mathsf{P} = \int_{\tilde{G}} X \mathrm{d}\mathsf{P}$$

(a) Let us first consider $X = 1_G$ with $G \in \mathcal{G}$. Let $H \in \mathcal{G}$. Then

$$\int_{H} \mathsf{E}(1_{G}Y|\mathcal{G}) \mathrm{d}\mathsf{P} = \int_{H} 1_{G}Y \mathrm{d}\mathsf{P} = \int_{G \cap H} Y \mathrm{d}\mathsf{P} = \int_{G \cap H} \mathsf{E}(Y|\mathcal{G}) \mathrm{d}\mathsf{P} = \int_{H} 1_{G}\mathsf{E}(Y|\mathcal{G}) \mathrm{d}\mathsf{P}$$

Since H was arbitrary and the conditional expectation is a linear operator this proves (i) for simple functions, i.e., random variables $X : \Omega \to \mathbb{R}$ of the form $X = \sum_{j=1}^{k} x_j \mathbf{1}_{A_j}$, where $A_j \in \mathcal{F}$, $x_j \in \mathbb{R}$, and $k \in \mathbb{N}$.

Extension to general X and Y is now done in two steps. First, we write $X = X^+ - X^-$ and $Y = Y^+ - Y^-$ where $Z^{\pm} = \pm \max(\pm Z, 0) \ge 0$. It is enough to prove (a) for positive random variables as can be seen by assuming such a result and writing

$$\mathsf{E}(XY|\mathcal{G}) = \sum_{a,b\in\pm} ab\mathsf{E}(X^aY^b|\mathcal{G}) = \sum_{a,b\in\pm} abX^a\mathsf{E}(Y^b|\mathcal{G}) = X\mathsf{E}(Y|\mathcal{G})\,,$$

So we may assume that $X, Y \ge 0$. Now Monotone Convergence theorem (M.C.) says that if a sequence $(Z_n)_{n\in\mathbb{N}}$ of random variables satisfies $0 \le Z_n \le Z_{n+1}$ and there is a limit $Z = \lim_{n\to\infty} Z_n$ satisfying $\mathbb{E}Z < \infty$ then $\lim_{n\to\infty} \mathbb{E}Z_n = \mathbb{E}Z$. To use this theorem we approximate positive random variables X by simple functions. This we do with the help of functions $\phi_n := [0,\infty) \to \{2^{-n}j: j=0,1,2,\ldots,n2^n\}, n\in\mathbb{N}$, defined by $\phi_n(r) := 2^{-n}\lfloor 2^n \max(r,n) \rfloor$, where $\lfloor x \rfloor$ is the integer part of a real x. By setting $X_n := \phi_n(X)$ we get a sequence of simple functions $(X_n)_{n\in\mathbb{N}}$ which satisfy $\lim_n X_n = X$ and $X_n \leq X$. Now, we can prove (a) by using monotone convergence theorem and the fact that the result holds for the simple functions (X_n) . Indeed, let $G \in \mathcal{G}$

$$\int_{G} XY d\mathsf{P} = \lim_{n} \int_{G} X_{n} Y d\mathsf{P} = \lim_{n} \int_{G} \mathsf{E}(X_{n}Y|\mathcal{G}) d\mathsf{P} = \lim_{n} \int_{G} X_{n} \mathsf{E}(Y|\mathcal{G}) d\mathsf{P} = \int_{G} X \mathsf{E}(Y|\mathcal{G}) d\mathsf{P}.$$

Notice that M.C. has been used twice - in the first equality and the last equality.