Quantum Probability: solutions for exercise set 1

Typically the abstract probability space is denoted by (€2, F,P). Unless otherwise stated, we
assume that ar.v. X — S, where S is a metric space, is measurable w.r.t. Borel o algebra B(S)
corresponding the metric topology of S, i.e., X~!1(B) € F for any B € B(S). Note that there
are many ways to write the same things:

Px(A) = PoX }A) = PXcd)=PHweQ: X(w)eA}).

Recall also that o(X) := {X 1(B):B € B(S)}. Since E is a linear operator we often drop
the parenthesis, e.g., Eu(X) = E[u(X)] = [,u(X(w))P(dw). We denote by x4 the indicator
function the event A, e.g., x4 : Q@ — {0,1} with xa(w) =1 if and only if w € A.

Question 1.1: Let f: S — T be an arbitrary function between two sets S and T. Recall, that
f7Y(B) :={se€S: f(s)€ B}, for BC T. Proof that f=' preserves the set operations in the
sense that for any subsets B and By of T the following hold: (a) f~Y(B¢) = (f~%(B))¢; (b)
N URBE) = UefH(Br): (c) f~H(wBx) = N f ' (Br)-

Answer 1.1: The function f induces the map f~!: 27 — 25 where 2° means the family of all
the subsets of S. (a) Directly from the definitions:

FHUBO) ={s: f(s) € B} = {s: f(s) & B} = {s: f(s) € B}* = [f(B)]°.

(b) Let I denote the index set that may be uncountable. Then, again directly from the defini-
tions:

F N URBy) = {s: f(s) € UpBr}y = {s: Ik € I s.t. f(s) € By}
=J{s: fe) e By ={J ' (By).
k k

(c) can be done just like (b). One can also do it by writing Ny By, = (U, By)¢, and then using
parts (a) and (b).

Question 1.2: Let {G, : a« € A} be a family of o-algebras. Show that G := NacaGq is o-algebra.
This result implies that o(X), the smallest o-algebra, in which r.v. X is measurable always exists.

Answer 1.2: One has to show that G satisfies the three properties (i-iii) of a o-algebra, namely
that (i) 0 € G, (ii) G € G implies G € G, (iii) (Gj)jen C G implies UjenG; € G. To see that
these hold, write

G = {G: Geg, for every a € A}. (0.1)

Since G, is a o-algebra, ) € G, for every o € A. Now, let G,G; € G be arbitrary. By (0.1)
G°,U;Gj € G, for every . Thus (0.1) implies that ), G°,U;G; € G and thus we have shown
that G is a o-algebra.

Question 1.3: Let R be a finite partition of Q. Let G consists of the empty set O, and all
possible unions of R € R. Show that (a) G is a o-algebra; (b) Any finite o-algebra is of this
type; (c) Let X : Q — R be G-measurable r.v. Prove that X can take only finitely many values
{z;:1<j<m} CR, meN, and express X is terms of xa, G € G.

Answer 1.3:
(a) We must show that properties (i-iii) of o-algebra listed in exercise 1.2 hold. Let R =
{Rj:j=1,...,n}, so that |[R| = n. By definition a general element G € G is of the form
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G = UjerR;, with I C {1,...,n} or I = (. Now, (i) is obviously true. To show (ii) we write
G° = O\G = (U R)\(UicrRi) = UjereR; with I¢ := {1,...,n}\I. But this means G° € G.
To show (iii) we take an arbitrary sequence of sets G; and write UjenG; = Ujen Ujser; Ri; =
Uie(u,1;)Ri, which is clearly an element of G.

(b) Let F be a finite o-algebra. Set

= {Re F\{0}:#F € F\{0,R} st. F C R}.

This is the partition we are looking for. First, it is clearly finite as R C F. Moreover, it is
obviously a partition. We have Q := U{R: R € R} = Q since otherwise F := Q\Q € F\{0}
and thus there would have to exist R C F such that R is nonempty and not contained in any
F € F other than itself. But this would imply R € R which is a contradiction. This shows that
one must have Q = Q. Finally, if Ry, Rs € R are distict elements then Ry N Ry # (. For if
R:= RN Ry € F\{0} then R C R; and R C Ry and consequently either R; or Ry could not
belong into R resulting in the contradiction (note: it could be that R = Ry or R = Ry but not
both at the same time).

(c) Let n = |G] < oo. Write X(2) = {xj <j } with x; # x; for i # j. Since X
is measurable w.r.t. G the sets R; := Y{z}), 1 < m form a measurable partition
R :={R;j:1<j<m} C F of Q. Thus |IX(Q)] = m < n. By definition we have X (w) =
Z;'nzl Tj - XR; (w)

Question 1.4: Let X,Y be random variables. (a) Suppose they both can take only finitely many
values. Express o(X,Y) in terms of the elements of o(X) and o(Y'). (b) Now, suppose X is
general, but Y can take finitely many values. Write E(X|Y) := E(X|o(Y)) as a deterministic
function f(Y) of Y.

Answer 1.4: (a) Let R = {R;:i <m} and S = {S; : j <n} be the generating partitions of
o-algebras o(A) and o(Y") respectively. Then o(X,Y") consists of () and all the possible unions
of the partition {R; N S; :1<i<m,1<j<n}

(b) By considering the partition that generates o(Y') it is easy to show that

E(xry=nX)
z= 3 i{y_y} Liy=y) = Z%XB
PY =y)
yeY (92)

<
<J

where Y(2) = {y1,...,yn} Bj := {y;} and o := E(x{y=y, }X)/P( = y;), is the conditional
expectation E(X[Y’). In other words, E[X[YV](w) = f(Y(w)) with f =37, ajxp;. Notice that
xB(Y(w)) = 1 if and only if Y(w) € B or in other words w € Y~1(B). This gives xp(Y) =

1Y71(B).
Question 1.5: (a) Suppose ¢ : R — Ry is increasing function. Proof that for R-valued r.v. X

one has:

E¢(X)
¢()
(b) Assume that Ee®X| < oo, for some a > 0. Show that P(|X| > r) < Me™", for some
0< A\ M < .

P(X >x) <

for every x €R.

Answer 1.5: (a) The starting point for the proof is the basic equality P(A) = E(14) valid
for any A € F. Now, let’s choose A = {X > z}. Since x < y implies ¢(z) < ¢(y), we have
A ={¢(X) > ¢(x)} and therefore we may approximate:

1A(w) < wlA(W) + 0-1Ac(w)
H(X () SEW), | XW)
S Ty AW gy ) = Ty



where we have used the partition of identity 1 = 14(w) + 14c(w). Notice also that positivity of
¢ has been used to write ¢(X)/¢(z) > 0. Taking expectations can comparing the left and right
most expressions gives now the bound.

(b) Choose ¢(x) := e, A € (0,a] and Y := | X|. Then (a) yields P(|X| >7) =P(Y >y) <
Me 2" with M = Ee?Y < Ee X,

Question 1.6: Construct random wvariables X,Y,Z such that the pairs {X,Y},{X,Z} and
{Y, Z} are independent, but {X,Y,Z} are not independent.

Answer 1.6: Independence means that P(X € A,Y € B,Z € C) =P(X € A)P(Y € B)P(Z ¢
C) for any proper measurable sets A, B,C. Perhaps simplest answer to this question is the
following: Let X,Y,Z : Q — {—1,1}. Let X,Y be identical but independent random variables
such that P(X = £1) = 1/2. Now set Z := XY. Clearly, by symmetry P(Z = £1) = 1/2.
Moreover, P(X = a,Z =b) = P(X =a,XY =b) =P(X =a,Y =b/a) = P(X =a)P(Y =
b/a) = 1/4 = P(X = a)P(Z = b) for any a,b € {—1,1}. It then follows easily that P(X; €
A, X9 € B) = P(X; € A)P(Xy € B) for any {X1,Xs} C {X,Y,Z}, X1 # X,. Similarly, one
obtains P(Y = a,Z = b) = P(Y = a)P(Z = b). However, X,Y,Z are not independent as
PX=aY=0b27=—-ab)=0#1/8=P(X =a)P(Y =b)P(Z = —ab) shows.

Question 1.7: Suppose G is a sub-o-algebra of F, and two random variables satisfy E| XY | < co.
Show that (a) if X is G-measurable then E(XY|G) = XE(Y[G); (b) if X is independent of G then
E(X|G) =EX; (¢) if G C G is another coarser sub-o-algebra then E(X|G) = E(E(X|G)|G).

Hint: Use simple functions.

Answer 1.7: Actually the hint here is a bit misleading. Simple functions are only used in the
proof of (a). Let us do (b-c) first.

(b) Let X be independent of G so that E(1¢X ) = E(X)E(1¢). But this implies E(16E[X|G]) =
E(1¢X) = E(lg) - E(X) = E{1¢E(X)}.

(¢) Take G € G C G. By using the definition of conditional expectations we get:

/éE[E(X|Q)|Q]dP:/GE(XIQ)dP:/éXdP.

(a) Let us first consider X = 1 with G € G. Let H € G. Then

/E(1GY|g)dP=/ 16YdP = YdP:/ E(Y|g)dP:/ 16E(Y|G)dP
H H GNH H

GNH
Since H was arbitrary and the conditional expectation is a linear operator this proves (i) for
simple functions, i.e., random variables X : Q — R of the form X = Z?:l w;la;, where A; € F,
z; € R, and k € N.

Extension to general X and Y is now done in two steps. First, we write X = X+ — X~ and
Y = YT — Y~ where Z* = + max(4+Z,0) > 0. It is enough to prove (a) for positive random
variables as can be seen by assuming such a result and writing

E(XY|G) = ) abE(X°Y’|G) = Y abX"E(Y®|G) = XE(Y|G),

a,bet a,bet

So we may assume that X, Y > 0. Now Monotone Convergence theorem (M.C.) says that if
a sequence (Zp)nen of random variables satisfies 0 < Z,, < Z, 11 and there is a limit Z =
limy, o0 Zy, satisfying EZ < oo then lim, .. EZ, = EZ. To use this theorem we approximate
positive random variables X by simple functions. This we do with the help of functions ¢, :
[0,00) = {27"j:7=0,1,2,...,n2"}, n € N, defined by ¢, (r) := 272" max(r,n)|, where |z|
is the integer part of a real z. By setting X,, := ¢,(X) we get a sequence of simple functions



(X)) nen which satisfy lim, X,, = X and X,, < X. Now, we can prove (a) by using monotone
convergence theorem and the fact that the result holds for the simple functions (X,,). Indeed,

let Geg
/XYdP :nm/ X,YdP :lim/ E(X,Y|G)dP zlim/ X,E(Y|G)dP = / XE(Y|G)dP.
G n G n G n Ja G

Notice that M.C. has been used twice - in the first equality and the last equality.



