
Quantum Probability: solutions for exercise set 1

Typically the abstract probability space is denoted by (Ω,F ,P). Unless otherwise stated, we
assume that a r.v. X → S, where S is a metric space, is measurable w.r.t. Borel σ algebra B(S)
corresponding the metric topology of S, i.e., X−1(B) ∈ F for any B ∈ B(S). Note that there
are many ways to write the same things:

PX(A) ≡ P ◦X−1(A) ≡ P(X ∈ A) ≡ P({ω ∈ Ω : X(ω) ∈ A}) .

Recall also that σ(X) := {X−1(B) : B ∈ B(S)}. Since E is a linear operator we often drop
the parenthesis, e.g., Eu(X) ≡ E[u(X)] ≡

∫
Ω u(X(ω))P(dω). We denote by χA the indicator

function the event A, e.g., χA : Ω→ {0, 1} with χA(ω) = 1 if and only if ω ∈ A.

Question 1.1: Let f : S → T be an arbitrary function between two sets S and T . Recall, that
f−1(B) := {s ∈ S : f(s) ∈ B}, for B ⊂ T . Proof that f−1 preserves the set operations in the
sense that for any subsets B and Bk of T the following hold: (a) f−1(Bc) = (f−1(B))c; (b)
f−1(∪kBk) = ∪kf−1(Bk); (c) f−1(∩kBk) = ∩kf−1(Bk).

Answer 1.1: The function f induces the map f−1 : 2T → 2S , where 2S means the family of all
the subsets of S. (a) Directly from the definitions:

f−1(Bc) = {s : f(s) ∈ Bc} = {s : f(s) /∈ B} = {s : f(s) ∈ B}c = [f(B)]c .

(b) Let I denote the index set that may be uncountable. Then, again directly from the defini-
tions:

f−1(∪kBk) = {s : f(s) ∈ ∪kBk} = {s : ∃k ∈ I s.t. f(s) ∈ Bk}

=
⋃
k

{s : f(s) ∈ Bk} =
⋃
k

f−1(Bk) .

(c) can be done just like (b). One can also do it by writing ∩kBk = (∪kBc
k)

c, and then using
parts (a) and (b).

Question 1.2: Let {Gα : α ∈ A} be a family of σ-algebras. Show that G := ∩α∈AGα is σ-algebra.
This result implies that σ(X), the smallest σ-algebra, in which r.v. X is measurable always exists.

Answer 1.2: One has to show that G satisfies the three properties (i-iii) of a σ-algebra, namely
that (i) ∅ ∈ G, (ii) G ∈ G implies Gc ∈ G, (iii) (Gj)j∈N ⊂ G implies ∪j∈NGj ∈ G. To see that
these hold, write

G = {G : G ∈ Gα for every α ∈ A} . (0.1)

Since Gα is a σ-algebra, ∅ ∈ Gα for every α ∈ A. Now, let G,Gj ∈ G be arbitrary. By (0.1)
Gc,∪jGj ∈ Gα for every α. Thus (0.1) implies that ∅, Gc,∪jGj ∈ G and thus we have shown
that G is a σ-algebra.

Question 1.3: Let R be a finite partition of Ω. Let G consists of the empty set ∅, and all
possible unions of R ∈ R. Show that (a) G is a σ-algebra; (b) Any finite σ-algebra is of this
type; (c) Let X : Ω → R be G-measurable r.v. Prove that X can take only finitely many values
{xj : 1 ≤ j ≤ m} ⊂ R, m ∈ N, and express X is terms of χG, G ∈ G.

Answer 1.3:
(a) We must show that properties (i-iii) of σ-algebra listed in exercise 1.2 hold. Let R =

{Rj : j = 1, . . . , n}, so that |R| = n. By definition a general element G ∈ G is of the form
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G = ∪i∈IRi, with I ⊂ {1, . . . , n} or I = ∅. Now, (i) is obviously true. To show (ii) we write
Gc = Ω\G = (∪ni=1R)\(∪i∈IRi) = ∪i∈IcRi with Ic := {1, . . . , n}\I. But this means Gc ∈ G.
To show (iii) we take an arbitrary sequence of sets Gj and write ∪j∈NGj = ∪j∈N ∪ij∈Ij Rij =
∪i∈(∪jIj)Ri, which is clearly an element of G.

(b) Let F be a finite σ-algebra. Set

R :=
{
R ∈ F\{∅} : @F ∈ F\{∅, R} s.t. F ⊂ R

}
.

This is the partition we are looking for. First, it is clearly finite as R ⊂ F . Moreover, it is
obviously a partition. We have Ω̃ := ∪{R : R ∈ R} = Ω since otherwise F := Ω\Ω̃ ∈ F\{∅}
and thus there would have to exist R̃ ⊂ F such that R̃ is nonempty and not contained in any
F ∈ F other than itself. But this would imply R̃ ∈ R which is a contradiction. This shows that
one must have Ω̃ = Ω. Finally, if R1, R2 ∈ R are distict elements then R1 ∩ R2 6= ∅. For if
R := R1 ∩ R2 ∈ F\{∅} then R ⊂ R1 and R ⊂ R2 and consequently either R1 or R2 could not
belong into R resulting in the contradiction (note: it could be that R = R1 or R = R2 but not
both at the same time).

(c) Let n = |G| < ∞. Write X(Ω) = {xj : 1 ≤ j ≤ m} with xi 6= xj for i 6= j. Since X
is measurable w.r.t. G the sets Rj := X−1({xj}), 1 ≤ j ≤ m form a measurable partition
R := {Rj : 1 ≤ j ≤ m} ⊂ F of Ω. Thus |X(Ω)| ≡ m ≤ n. By definition we have X(ω) =∑m

j=1 xj · χRj (ω).

Question 1.4: Let X,Y be random variables. (a) Suppose they both can take only finitely many
values. Express σ(X,Y ) in terms of the elements of σ(X) and σ(Y ). (b) Now, suppose X is
general, but Y can take finitely many values. Write E(X|Y ) := E(X|σ(Y )) as a deterministic
function f(Y ) of Y .

Answer 1.4: (a) Let R = {Ri : i ≤ m} and S = {Sj : j ≤ n} be the generating partitions of
σ-algebras σ(A) and σ(Y ) respectively. Then σ(X,Y ) consists of ∅ and all the possible unions
of the partition {Ri ∩ Sj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

(b) By considering the partition that generates σ(Y ) it is easy to show that

Z =
∑

y∈Y (Ω)

E(χ{Y=y}X)
P(Y = y)

1{Y=y} =
n∑
j=1

αjχBj (y)

where Y (Ω) = {y1, . . . , yn} Bj := {yj} and αj := E(χ{Y=yj}X)/P(Y = yj), is the conditional
expectation E(X|Y ). In other words, E[X|Y ](ω) = f(Y (ω)) with f =

∑n
j=1 αjχBj . Notice that

χB(Y (ω)) = 1 if and only if Y (ω) ∈ B or in other words ω ∈ Y −1(B). This gives χB(Y ) =
1Y −1(B).

Question 1.5: (a) Suppose φ : R → R+ is increasing function. Proof that for R-valued r.v. X
one has:

P(X ≥ x) ≤ Eφ(X)
φ(x)

for every x ∈ R .

(b) Assume that Eeα|X| < ∞, for some α > 0. Show that P(|X| ≥ r) ≤ Me−λr, for some
0 < λ,M <∞.

Answer 1.5: (a) The starting point for the proof is the basic equality P(A) = E(1A) valid
for any A ∈ F . Now, let’s choose A = {X ≥ x}. Since x < y implies φ(x) < φ(y), we have
A = {φ(X) ≥ φ(x)} and therefore we may approximate:

1A(ω) ≤ φ(X(ω))
φ(x)

1A(ω) + 0 · 1Ac(ω)

≤ φ(X(ω))
φ(x)

1A(ω) +
φ(X(ω))
φ(x)

1Ac(ω) =
φ(X(ω))
φ(x)

,
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where we have used the partition of identity 1 = 1A(ω) + 1Ac(ω). Notice also that positivity of
φ has been used to write φ(X)/φ(x) ≥ 0. Taking expectations can comparing the left and right
most expressions gives now the bound.

(b) Choose φ(x) := eλx, λ ∈ (0, α] and Y := |X|. Then (a) yields P(|X| ≥ r) = P(Y ≥ y) ≤
Me−αr with M = EeλY ≤ Eeα|X|.

Question 1.6: Construct random variables X,Y, Z such that the pairs {X,Y }, {X,Z} and
{Y,Z} are independent, but {X,Y, Z} are not independent.

Answer 1.6: Independence means that P(X ∈ A, Y ∈ B,Z ∈ C) = P(X ∈ A)P(Y ∈ B)P(Z ∈
C) for any proper measurable sets A,B,C. Perhaps simplest answer to this question is the
following: Let X,Y, Z : Ω → {−1, 1}. Let X,Y be identical but independent random variables
such that P(X = ±1) = 1/2. Now set Z := XY . Clearly, by symmetry P(Z = ±1) = 1/2.
Moreover, P(X = a, Z = b) = P(X = a,XY = b) = P(X = a, Y = b/a) = P(X = a)P(Y =
b/a) = 1/4 = P(X = a)P(Z = b) for any a, b ∈ {−1, 1}. It then follows easily that P(X1 ∈
A,X2 ∈ B) = P(X1 ∈ A)P(X2 ∈ B) for any {X1, X2} ⊂ {X,Y, Z}, X1 6= X2. Similarly, one
obtains P(Y = a, Z = b) = P(Y = a)P(Z = b). However, X,Y, Z are not independent as
P(X = a, Y = b, Z = −ab) = 0 6= 1/8 = P(X = a)P(Y = b)P(Z = −ab) shows.

Question 1.7: Suppose G is a sub-σ-algebra of F , and two random variables satisfy E|XY | <∞.
Show that (a) if X is G-measurable then E(XY |G) = XE(Y |G); (b) if X is independent of G then
E(X|G) = EX; (c) if G̃ ⊂ G is another coarser sub-σ-algebra then E(X|G̃) = E(E(X|G)|G̃).
Hint: Use simple functions.

Answer 1.7: Actually the hint here is a bit misleading. Simple functions are only used in the
proof of (a). Let us do (b-c) first.

(b) LetX be independent of G so that E(1GX) = E(X)E(1G). But this implies E(1GE[X|G]) =
E(1GX) = E(1G) · E(X) = E

{
1GE(X)

}
.

(c) Take G̃ ∈ G̃ ⊂ G. By using the definition of conditional expectations we get:∫
G̃

E[E(X|G)|G̃]dP =
∫
G̃

E(X|G)dP =
∫
G̃
XdP .

(a) Let us first consider X = 1G with G ∈ G. Let H ∈ G. Then∫
H

E(1GY |G)dP =
∫
H

1GY dP =
∫
G∩H

Y dP =
∫
G∩H

E(Y |G)dP =
∫
H

1GE(Y |G)dP

Since H was arbitrary and the conditional expectation is a linear operator this proves (i) for
simple functions, i.e., random variables X : Ω→ R of the form X =

∑k
j=1 xj1Aj , where Aj ∈ F ,

xj ∈ R, and k ∈ N.
Extension to general X and Y is now done in two steps. First, we write X = X+ −X− and

Y = Y + − Y − where Z± = ±max(±Z, 0) ≥ 0. It is enough to prove (a) for positive random
variables as can be seen by assuming such a result and writing

E(XY |G) =
∑
a,b∈±

abE(XaY b|G) =
∑
a,b∈±

abXaE(Y b|G) = XE(Y |G) ,

So we may assume that X,Y ≥ 0. Now Monotone Convergence theorem (M.C.) says that if
a sequence (Zn)n∈N of random variables satisfies 0 ≤ Zn ≤ Zn+1 and there is a limit Z =
limn→∞ Zn satisfying EZ < ∞ then limn→∞ EZn = EZ. To use this theorem we approximate
positive random variables X by simple functions. This we do with the help of functions φn :
[0,∞)→ {2−nj : j = 0, 1, 2, . . . , n2n}, n ∈ N, defined by φn(r) := 2−nb2n max(r, n)c, where bxc
is the integer part of a real x. By setting Xn := φn(X) we get a sequence of simple functions
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(Xn)n∈N which satisfy limnXn = X and Xn ≤ X. Now, we can prove (a) by using monotone
convergence theorem and the fact that the result holds for the simple functions (Xn). Indeed,
let G ∈ G∫

G
XY dP = lim

n

∫
G
XnY dP = lim

n

∫
G

E(XnY |G)dP = lim
n

∫
G
XnE(Y |G)dP =

∫
G
XE(Y |G)dP .

Notice that M.C. has been used twice - in the first equality and the last equality.
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