Quantum Probability: solutions for exercise set 1

Typically the abstract probability space is denoted by $(\Omega, \mathcal{F}, \mathrm{P})$. Unless otherwise stated, we assume that a r.v. $X \rightarrow S$, where S is a metric space, is measurable w.r.t. Borel σ algebra $\mathcal{B}(S)$ corresponding the metric topology of S, i.e., $X^{-1}(B) \in \mathcal{F}$ for any $B \in \mathcal{B}(S)$. Note that there are many ways to write the same things:

$$
\mathrm{P}_{X}(A) \equiv \mathrm{P} \circ X^{-1}(A) \equiv \mathrm{P}(X \in A) \equiv \mathrm{P}(\{\omega \in \Omega: X(\omega) \in A\})
$$

Recall also that $\sigma(X):=\left\{X^{-1}(B): B \in \mathcal{B}(S)\right\}$. Since E is a linear operator we often drop the parenthesis, e.g., $\mathrm{E} u(X) \equiv \mathrm{E}[u(X)] \equiv \int_{\Omega} u(X(\omega)) \mathrm{P}(\mathrm{d} \omega)$. We denote by χ_{A} the indicator function the event A, e.g., $\chi_{A}: \Omega \rightarrow\{0,1\}$ with $\chi_{A}(\omega)=1$ if and only if $\omega \in A$.

Question 1.1: Let $f: S \rightarrow T$ be an arbitrary function between two sets S and T. Recall, that $f^{-1}(B):=\{s \in S: f(s) \in B\}$, for $B \subset T$. Proof that f^{-1} preserves the set operations in the sense that for any subsets B and B_{k} of T the following hold: (a) $f^{-1}\left(B^{c}\right)=\left(f^{-1}(B)\right)^{c}$; (b) $f^{-1}\left(\cup_{k} B_{k}\right)=\cup_{k} f^{-1}\left(B_{k}\right) ;(c) f^{-1}\left(\cap_{k} B_{k}\right)=\cap_{k} f^{-1}\left(B_{k}\right)$.
Answer 1.1: The function f induces the map $f^{-1}: 2^{T} \rightarrow 2^{S}$, where 2^{S} means the family of all the subsets of S. (a) Directly from the definitions:

$$
f^{-1}\left(B^{\mathrm{c}}\right)=\left\{s: f(s) \in B^{\mathrm{c}}\right\}=\{s: f(s) \notin B\}=\{s: f(s) \in B\}^{\mathrm{c}}=[f(B)]^{\mathrm{c}} .
$$

(b) Let I denote the index set that may be uncountable. Then, again directly from the definitions:

$$
\begin{aligned}
f^{-1}\left(\cup_{k} B_{k}\right) & =\left\{s: f(s) \in \cup_{k} B_{k}\right\}=\left\{s: \exists k \in I \text { s.t. } f(s) \in B_{k}\right\} \\
& =\bigcup_{k}\left\{s: f(s) \in B_{k}\right\}=\bigcup_{k} f^{-1}\left(B_{k}\right) .
\end{aligned}
$$

(c) can be done just like (b). One can also do it by writing $\cap_{k} B_{k}=\left(\cup_{k} B_{k}^{c}\right)^{c}$, and then using parts (a) and (b).

Question 1.2: Let $\left\{\mathcal{G}_{\alpha}: \alpha \in A\right\}$ be a family of σ-algebras. Show that $\mathcal{G}:=\cap_{\alpha \in A} \mathcal{G}_{\alpha}$ is σ-algebra. This result implies that $\sigma(X)$, the smallest σ-algebra, in which r.v. X is measurable always exists.

Answer 1.2: One has to show that \mathcal{G} satisfies the three properties (i-iii) of a σ-algebra, namely that (i) $\emptyset \in \mathcal{G}$, (ii) $G \in \mathcal{G}$ implies $G^{\mathrm{c}} \in \mathcal{G}$, (iii) $\left(G_{j}\right)_{j \in \mathbb{N}} \subset \mathcal{G}$ implies $\cup_{j \in \mathbb{N}} G_{j} \in \mathcal{G}$. To see that these hold, write

$$
\begin{equation*}
\mathcal{G}=\left\{G: G \in \mathcal{G}_{\alpha} \text { for every } \alpha \in A\right\} . \tag{0.1}
\end{equation*}
$$

Since \mathcal{G}_{α} is a σ-algebra, $\emptyset \in \mathcal{G}_{\alpha}$ for every $\alpha \in A$. Now, let $G, G_{j} \in \mathcal{G}$ be arbitrary. By (0.1) $G^{\mathrm{c}}, \cup_{j} G_{j} \in \mathcal{G}_{\alpha}$ for every α. Thus (0.1) implies that $\emptyset, G^{\mathrm{c}}, \cup_{j} G_{j} \in \mathcal{G}$ and thus we have shown that \mathcal{G} is a σ-algebra.

Question 1.3: Let \mathcal{R} be a finite partition of Ω. Let \mathcal{G} consists of the empty set \emptyset, and all possible unions of $R \in \mathcal{R}$. Show that (a) \mathcal{G} is a σ-algebra; (b) Any finite σ-algebra is of this type; (c) Let $X: \Omega \rightarrow \mathbb{R}$ be \mathcal{G}-measurable r.v. Prove that X can take only finitely many values $\left\{x_{j}: 1 \leq j \leq m\right\} \subset \mathbb{R}, m \in \mathbb{N}$, and express X is terms of $\chi_{G}, G \in \mathcal{G}$.

Answer 1.3:

(a) We must show that properties (i-iii) of σ-algebra listed in exercise 1.2 hold. Let $\mathcal{R}=$ $\left\{R_{j}: j=1, \ldots, n\right\}$, so that $|\mathcal{R}|=n$. By definition a general element $G \in \mathcal{G}$ is of the form
$G=\cup_{i \in I} R_{i}$, with $I \subset\{1, \ldots, n\}$ or $I=\emptyset$. Now, (i) is obviously true. To show (ii) we write $G^{\mathrm{c}}=\Omega \backslash G=\left(\cup_{i=1}^{n} R\right) \backslash\left(\cup_{i \in I} R_{i}\right)=\cup_{i \in I^{\mathrm{c}}} R_{i}$ with $I^{\mathrm{c}}:=\{1, \ldots, n\} \backslash I$. But this means $G^{\mathrm{c}} \in \mathcal{G}$. To show (iii) we take an arbitrary sequence of sets G_{j} and write $\cup_{j \in \mathbb{N}} G_{j}=\cup_{j \in \mathbb{N}} \cup_{i_{j} \in I_{j}} R_{i_{j}}=$ $\cup_{i \in\left(\cup_{j} I_{j}\right)} R_{i}$, which is clearly an element of \mathcal{G}.
(b) Let \mathcal{F} be a finite σ-algebra. Set

$$
\mathcal{R}:=\{R \in \mathcal{F} \backslash\{\emptyset\}: \nexists F \in \mathcal{F} \backslash\{\emptyset, R\} \text { s.t. } F \subset R\} .
$$

This is the partition we are looking for. First, it is clearly finite as $\mathcal{R} \subset \mathcal{F}$. Moreover, it is obviously a partition. We have $\tilde{\Omega}:=\cup\{R: R \in \mathcal{R}\}=\Omega$ since otherwise $F:=\Omega \backslash \tilde{\Omega} \in \mathcal{F} \backslash\{\emptyset\}$ and thus there would have to exist $\tilde{R} \subset F$ such that \tilde{R} is nonempty and not contained in any $F \in \mathcal{F}$ other than itself. But this would imply $\tilde{R} \in \mathcal{R}$ which is a contradiction. This shows that one must have $\tilde{\Omega}=\Omega$. Finally, if $R_{1}, R_{2} \in \mathcal{R}$ are distict elements then $R_{1} \cap R_{2} \neq \emptyset$. For if $R:=R_{1} \cap R_{2} \in \mathcal{F} \backslash\{\emptyset\}$ then $R \subset R_{1}$ and $R \subset R_{2}$ and consequently either R_{1} or R_{2} could not belong into \mathcal{R} resulting in the contradiction (note: it could be that $R=R_{1}$ or $R=R_{2}$ but not both at the same time).
(c) Let $n=|\mathcal{G}|<\infty$. Write $X(\Omega)=\left\{x_{j}: 1 \leq j \leq m\right\}$ with $x_{i} \neq x_{j}$ for $i \neq j$. Since X is measurable w.r.t. \mathcal{G} the sets $R_{j}:=X^{-1}\left(\left\{x_{j}\right\}\right), 1 \leq j \leq m$ form a measurable partition $\mathcal{R}:=\left\{R_{j}: 1 \leq j \leq m\right\} \subset \mathcal{F}$ of Ω. Thus $|X(\Omega)| \equiv m \leq n$. By definition we have $X(\omega)=$ $\sum_{j=1}^{m} x_{j} \cdot \chi_{R_{j}}(\omega)$.

Question 1.4: Let X, Y be random variables. (a) Suppose they both can take only finitely many values. Express $\sigma(X, Y)$ in terms of the elements of $\sigma(X)$ and $\sigma(Y)$. (b) Now, suppose X is general, but Y can take finitely many values. Write $\mathrm{E}(X \mid Y):=\mathrm{E}(X \mid \sigma(Y))$ as a deterministic function $f(Y)$ of Y.

Answer 1.4: (a) Let $\mathcal{R}=\left\{R_{i}: i \leq m\right\}$ and $\mathcal{S}=\left\{S_{j}: j \leq n\right\}$ be the generating partitions of σ-algebras $\sigma(A)$ and $\sigma(Y)$ respectively. Then $\sigma(X, Y)$ consists of \emptyset and all the possible unions of the partition $\left\{R_{i} \cap S_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$.
(b) By considering the partition that generates $\sigma(Y)$ it is easy to show that

$$
Z=\sum_{y \in Y(\Omega)} \frac{\mathrm{E}\left(\chi_{\{Y=y\}} X\right)}{\mathrm{P}(Y=y)} 1_{\{Y=y\}}=\sum_{j=1}^{n} \alpha_{j} \chi_{B_{j}}(y)
$$

where $Y(\Omega)=\left\{y_{1}, \ldots, y_{n}\right\} \quad B_{j}:=\left\{y_{j}\right\}$ and $\alpha_{j}:=\mathrm{E}\left(\chi_{\left\{Y=y_{j}\right\}} X\right) / \mathrm{P}\left(Y=y_{j}\right)$, is the conditional expectation $\mathrm{E}(X \mid Y)$. In other words, $\mathrm{E}[X \mid Y](\omega)=f(Y(\omega))$ with $f=\sum_{j=1}^{n} \alpha_{j} \chi_{B_{j}}$. Notice that $\chi_{B}(Y(\omega))=1$ if and only if $Y(\omega) \in B$ or in other words $\omega \in Y^{-1}(B)$. This gives $\chi_{B}(Y)=$ $1_{Y^{-1}(B)}$.

Question 1.5: (a) Suppose $\phi: \mathbb{R} \rightarrow \mathbb{R}_{+}$is increasing function. Proof that for \mathbb{R}-valued r.v. X one has:

$$
\mathrm{P}(X \geq x) \leq \frac{\mathrm{E} \phi(X)}{\phi(x)} \quad \text { for every } \quad x \in \mathbb{R}
$$

(b) Assume that $\mathrm{Ee}^{\alpha|X|}<\infty$, for some $\alpha>0$. Show that $\mathrm{P}(|X| \geq r) \leq M \mathrm{e}^{-\lambda r}$, for some $0<\lambda, M<\infty$.

Answer 1.5: (a) The starting point for the proof is the basic equality $\mathrm{P}(A)=\mathrm{E}\left(1_{A}\right)$ valid for any $A \in \mathcal{F}$. Now, let's choose $A=\{X \geq x\}$. Since $x<y$ implies $\phi(x)<\phi(y)$, we have $A=\{\phi(X) \geq \phi(x)\}$ and therefore we may approximate:

$$
\begin{aligned}
1_{A}(\omega) & \leq \frac{\phi(X(\omega))}{\phi(x)} 1_{A}(\omega)+0 \cdot 1_{A^{c}}(\omega) \\
& \leq \frac{\phi(X(\omega))}{\phi(x)} 1_{A}(\omega)+\frac{\phi(X(\omega))}{\phi(x)} 1_{A^{c}}(\omega)=\frac{\phi(X(\omega))}{\phi(x)},
\end{aligned}
$$

where we have used the partition of identity $1=1_{A}(\omega)+1_{A^{c}}(\omega)$. Notice also that positivity of ϕ has been used to write $\phi(X) / \phi(x) \geq 0$. Taking expectations can comparing the left and right most expressions gives now the bound.
(b) Choose $\phi(x):=\mathrm{e}^{\lambda x}, \lambda \in(0, \alpha]$ and $Y:=|X|$. Then (a) yields $\mathrm{P}(|X| \geq r)=\mathrm{P}(Y \geq y) \leq$ $M \mathrm{e}^{-\alpha r}$ with $M=\mathrm{Ee}^{\lambda Y} \leq \mathrm{Ee}^{\alpha|X|}$.

Question 1.6: Construct random variables X, Y, Z such that the pairs $\{X, Y\},\{X, Z\}$ and $\{Y, Z\}$ are independent, but $\{X, Y, Z\}$ are not independent.
Answer 1.6: Independence means that $\mathrm{P}(X \in A, Y \in B, Z \in C)=\mathrm{P}(X \in A) \mathrm{P}(Y \in B) \mathrm{P}(Z \in$ C) for any proper measurable sets A, B, C. Perhaps simplest answer to this question is the following: Let $X, Y, Z: \Omega \rightarrow\{-1,1\}$. Let X, Y be identical but independent random variables such that $\mathrm{P}(X= \pm 1)=1 / 2$. Now set $Z:=X Y$. Clearly, by symmetry $\mathrm{P}(Z= \pm 1)=1 / 2$. Moreover, $\mathrm{P}(X=a, Z=b)=\mathrm{P}(X=a, X Y=b)=\mathrm{P}(X=a, Y=b / a)=\mathrm{P}(X=a) \mathrm{P}(Y=$ $b / a)=1 / 4=\mathrm{P}(X=a) \mathrm{P}(Z=b)$ for any $a, b \in\{-1,1\}$. It then follows easily that $\mathrm{P}\left(X_{1} \in\right.$ $\left.A, X_{2} \in B\right)=\mathrm{P}\left(X_{1} \in A\right) \mathrm{P}\left(X_{2} \in B\right)$ for any $\left\{X_{1}, X_{2}\right\} \subset\{X, Y, Z\}, X_{1} \neq X_{2}$. Similarly, one obtains $\mathrm{P}(Y=a, Z=b)=\mathrm{P}(Y=a) \mathrm{P}(Z=b)$. However, X, Y, Z are not independent as $\mathrm{P}(X=a, Y=b, Z=-a b)=0 \neq 1 / 8=\mathrm{P}(X=a) \mathrm{P}(Y=b) \mathrm{P}(Z=-a b)$ shows.

Question 1.7: Suppose \mathcal{G} is a sub- σ-algebra of \mathcal{F}, and two random variables satisfy $\mathrm{E}|X Y|<\infty$. Show that (a) if X is \mathcal{G}-measurable then $\mathrm{E}(X Y \mid \mathcal{G})=X \mathrm{E}(Y \mid \mathcal{G})$; (b) if X is independent of \mathcal{G} then $\mathrm{E}(X \mid \mathcal{G})=\mathrm{E} X ;(c)$ if $\tilde{\mathcal{G}} \subset \mathcal{G}$ is another coarser sub- σ-algebra then $\mathrm{E}(X \mid \tilde{\mathcal{G}})=\mathrm{E}(\mathrm{E}(X \mid \mathcal{G}) \mid \tilde{\mathcal{G}})$.
Hint: Use simple functions.
Answer 1.7: Actually the hint here is a bit misleading. Simple functions are only used in the proof of (a). Let us do (b-c) first.
(b) Let X be independent of \mathcal{G} so that $\mathrm{E}\left(1_{G} X\right)=\mathrm{E}(X) \mathrm{E}\left(1_{G}\right)$. But this implies $\mathrm{E}\left(1_{G} \mathrm{E}[X \mid \mathcal{G}]\right)=$ $\mathrm{E}\left(1_{G} X\right)=\mathrm{E}\left(1_{G}\right) \cdot \mathrm{E}(X)=\mathrm{E}\left\{1_{G} \mathrm{E}(X)\right\}$.
(c) Take $\tilde{G} \in \tilde{\mathcal{G}} \subset \mathcal{G}$. By using the definition of conditional expectations we get:

$$
\int_{\tilde{G}} \mathrm{E}[\mathrm{E}(X \mid \mathcal{G}) \mid \tilde{\mathcal{G}}] \mathrm{dP}=\int_{\tilde{G}} \mathrm{E}(X \mid \mathcal{G}) \mathrm{dP}=\int_{\tilde{G}} X \mathrm{dP}
$$

(a) Let us first consider $X=1_{G}$ with $G \in \mathcal{G}$. Let $H \in \mathcal{G}$. Then

$$
\int_{H} \mathrm{E}\left(1_{G} Y \mid \mathcal{G}\right) \mathrm{dP}=\int_{H} 1_{G} Y \mathrm{dP}=\int_{G \cap H} Y \mathrm{dP}=\int_{G \cap H} \mathrm{E}(Y \mid \mathcal{G}) \mathrm{dP}=\int_{H} 1_{G} \mathrm{E}(Y \mid \mathcal{G}) \mathrm{dP}
$$

Since H was arbitrary and the conditional expectation is a linear operator this proves (i) for simple functions, i.e., random variables $X: \Omega \rightarrow \mathbb{R}$ of the form $X=\sum_{j=1}^{k} x_{j} 1_{A_{j}}$, where $A_{j} \in \mathcal{F}$, $x_{j} \in \mathbb{R}$, and $k \in \mathbb{N}$.

Extension to general X and Y is now done in two steps. First, we write $X=X^{+}-X^{-}$and $Y=Y^{+}-Y^{-}$where $Z^{ \pm}= \pm \max (\pm Z, 0) \geq 0$. It is enough to prove (a) for positive random variables as can be seen by assuming such a result and writing

$$
\mathrm{E}(X Y \mid \mathcal{G})=\sum_{a, b \in \pm} a b \mathrm{E}\left(X^{a} Y^{b} \mid \mathcal{G}\right)=\sum_{a, b \in \pm} a b X^{a} \mathrm{E}\left(Y^{b} \mid \mathcal{G}\right)=X \mathrm{E}(Y \mid \mathcal{G})
$$

So we may assume that $X, Y \geq 0$. Now Monotone Convergence theorem (M.C.) says that if a sequence $\left(Z_{n}\right)_{n \in \mathbb{N}}$ of random variables satisfies $0 \leq Z_{n} \leq Z_{n+1}$ and there is a limit $Z=$ $\lim _{n \rightarrow \infty} Z_{n}$ satisfying $\mathrm{E} Z<\infty$ then $\lim _{n \rightarrow \infty} \mathrm{E} Z_{n}=\mathrm{E} Z$. To use this theorem we approximate positive random variables X by simple functions. This we do with the help of functions ϕ_{n} : $[0, \infty) \rightarrow\left\{2^{-n} j: j=0,1,2, \ldots, n 2^{n}\right\}, n \in \mathbb{N}$, defined by $\phi_{n}(r):=2^{-n}\left\lfloor 2^{n} \max (r, n)\right\rfloor$, where $\lfloor x\rfloor$ is the integer part of a real x. By setting $X_{n}:=\phi_{n}(X)$ we get a sequence of simple functions
$\left(X_{n}\right)_{n \in \mathbb{N}}$ which satisfy $\lim _{n} X_{n}=X$ and $X_{n} \leq X$. Now, we can prove (a) by using monotone convergence theorem and the fact that the result holds for the simple functions $\left(X_{n}\right)$. Indeed, let $G \in \mathcal{G}$

$$
\int_{G} X Y \mathrm{dP}=\lim _{n} \int_{G} X_{n} Y \mathrm{dP}=\lim _{n} \int_{G} \mathrm{E}\left(X_{n} Y \mid \mathcal{G}\right) \mathrm{dP}=\lim _{n} \int_{G} X_{n} \mathrm{E}(Y \mid \mathcal{G}) \mathrm{dP}=\int_{G} X \mathrm{E}(Y \mid \mathcal{G}) \mathrm{dP} .
$$

Notice that M.C. has been used twice - in the first equality and the last equality.

