
Quantum Probability Home Exam 2010 (Version 1.1)
- Due to Monday 24.5.2010, 12.00 o’clock.

Write one problem per sheet. Write enough intermediate steps and try to be as clear as possible.
If you suspect you have found an error, please send email to: oskari.ajanki@iki.fi

Remark: This exam is somewhat demanding but not as demanding as it may appear at the first
glance. You may find hints and other support information provided with the problems.

1. Let {Bt : t ≥ 0} be a (one-dimensional) Brownian motion and set

Kt := αt+Bt , (0.1)

where α ∈ R is a constant. Set (Xt, Yt) = (cosKt, sinKt).

(a) Find stochastic differential equation for (Xt, Yt), i.e., find functions b : R2 → R2,
σ : R2 → R2×2 and a 2-dimensional Brownian motion {Wt : t ≥ 0}, with Wt = (W 1

t ,W
2
t ),

such that (dXt,dYt) = b(Xt, Yt)dt+ σ(Xt, Yt)dWt

(b) Find the Markov semigroup generator L so that

(etLu)(x, y) = E
[
u(Xt, Yt)

∣∣(X0, Y0) = (x, y)
]
,

for an appropriate class of functions u : R2 → R.

(c) Find the stationary state measure for (Xt, Yt). When does the detailed balance hold?

(d) How do the answers to (b) and (c) change if instead of (0.1) the process Kt is the
solution of the stochastic differential equation

dKt = αdt+XtdBt − YtdB′t
K0 = 0 ,

where {Bt} and {B′t} are independent copies standard Brownian motions.

2. In this problem we consider a mechanical chain of n oscillators connected to stochastic
heat baths at the both ends. Let qx ∈ R be the deviation of the oscillator x = 1, . . . , n
from its equilibrium position (qx = 0) and let px be the corresponding momentum. The
Hamiltonian for the system is

H(p, q) =
n∑
x=0

{
p2
x

2
+ v(qx) + u(qx+1 − qx)

}
with q0 = qn+1 := 0 ,

where u, v : R → [0,∞) are smooth potential functions which grow monotonically as one
moves away from the origin and u(0) = v(0) = 0. Let T1 ≥ Tn > 0 be temperatures of
the left (x = 1) and right (x = n) heat baths, respectively. We model the coupling of the
oscillators to the heat baths by adding noise to the Hamiltonian equations

dqx =
∂H

∂px
(p, q)dt

dpx = −∂H
∂qx

(p, q)dt + (δx1 + δxn)(−λpxdt+
√

2λTxdwx) ,
(0.2)

where wx = {wx(t) : t ≥ 0}, x = 1, n, are independent Brownian motions, and λ > 0 is a
coupling constant.
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(a) Let E(t) := H(p(t), q(t)) be the energy of the system at time t. By using Ito-calculus
and the fact that Hamiltonian dynamics conserve energy one can write

dE = j1(p1)dt − jn(pn)dt + g1(p, q)dw1 + gn(p, q)dwn , (0.3)

where jx : R → R and gx : Rn × Rn → R. Find explicit formulas for the functions
j1, jn, g1, gn.

(b) Suppose that T1 = Tn = T > 0. Show that the Gibbs-measure

µT (dp dq) = Z−1
T e−

1
T
H(p,q)dp dq with ZT =

∫∫
e−

1
T
H(p,q)dp dq ,

is the stationary state probability measure of {(p(t), q(t)) : t ≥ 0}.

(c) Show that ∫
jx(px)dµT (dpdq) = 0 for x = 1, n .

Suppose µT1,Tn is the general ergodic stationary state probability measure of (0.2), e.g.,
µT,T = µT . Use this to proof that∫

j1(p1)dµT1,Tn(dp dq) =
∫
jn(pn)dµT1,Tn(dp dq) =: J̄(T1, Tn) .

What is the physical interpretation of the quantity J̄(T1, Tn)?

3. Consider a ideal Bose gas in the box V := [−L,L]d. In the coordinate basis the system
is thus described by a wave function ψ ∈ Γs(L2(V,md)) where md is the d-dimensional
Lebesgue measure. Let {φj : j ∈ N0} be the eigenfunctions of the single particle Hamil-
tonian h so that in the coordinate representation hφj = −∆φj = εjφj with φj(x) =
|V |−1/2eikj ·x and εj = |kj |2. Denote the Weyl operator W (f) := eiΦ(f) where Φ(f) :=
2−1/2(a†(f) + a(f)) (Note: different normalization of Φ was used in the lecture notes).
The generating function corresponding to the density operator ρ is defined by Eρ(f) :=
Tr {W (f)ρ} where f is taken from some appropriate test function space.

(a) Compute the generating function EΩ(f) = 〈Ω,W (f)Ω〉 of the vacuum state.

(b) Let n0 ∈ N0 be the number of particles in the ground state and denote by θ0 = n0/V the
density of particles in the ground state. Show that the corresponding generating function
is

EV,θ0(f) = EΩ(f) · 1
n!

n∑
l=0

(
n

l

)
n!

(n− l)!

(
−|〈φ0, f〉|2

2

)n−l
.

By assuming that the support of f is bounded (compact) and using the known limit

j0(2
√
z) = lim

n→∞

1
n!

n∑
l=0

(
n

l

)
n!

(n− l)!

(
−z
n

)n−l
,

where j0 is a Bessel function, show that in the infinite volume limit |V | → ∞ one obtains

Eθ0(f) := lim
|V |→∞

EV,θ0(f) = EΩ(f) · j0
(
(2π)d/2(2θ0)1/2|f̂(0)|

)
,

where f̂(k) := (2π)−d/2
∫

e−ik·xf(x)dx.
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(c) Let θj = nj/|V |, |V | ≡ md(V ) = (2L)d, denote the density of particles which are in the
j:th energy state φj and consider an excited state

ΨV,θ =
1√

n1! · · ·n`!
a†(φ1)n1 · · · a†(φ`)n`Ω ,

where θ ≡ (θ0, θ1, . . . , θ`) (Note: φj depends on the box size V even thought this is not
indicated by the notations.). Let EV,θ(f) = 〈ΨV,θ,W (f)ΨV,θ〉 denote the finite volume
generating function. Using using the same ideas as in the part (b) show that the infinite
volume generating function Eθ(f) := lim|V |→∞EV,θ(f) is

Eθ(f) = EΩ(f) ·
∏̀
j=0

j0
(
(2π)d/2(2θj)1/2|f̂(kj)|

)
. (0.4)

(d) In the infinite volume limit, the values kj in (0.4) are not restricted by boundary
conditions and can therefore take values in the continuum, i.e., in Rd. Thus, as the next step
it is natural to generalize formula (0.4) for continuous distribution k 7→ θ(k) of momentum
values. Show that

Eθ(f) = exp
[
−1

4
〈
f̂ , (1 + 2(2π)dθ)f̂

〉]
.

Hint: Consider first a fixed momentum range [−K,K]d,K > 0, in (0.4). Let θ(K,m),m ∈ N,
be a density vector such that the component θ(K,m)

j , j ≡ (j1, . . . , jd) ∈ {0, 1, . . . ,m}d

describes the density of particles with a momentum k = (k1, . . . , kd), ki = −K+ 2K
m ji. Use

the estimate
ln j0(ε) = −ε2/2 + O(ε2+δ) for δ > 0 ,

and the above (K,m)-discretion scheme to express (0.4) as an exponent of an inner product.
Notice that you have to take two limits.

(e) Finally, find out the generating function Eθ0,θ(f) for the infinitely extended ideal Bose-
gas where θ0 ≥ 0 fraction of the particles are at the ground state, while the rest of the
particles are distributed according to the density θ : Rd → [0,∞). For which choices of
θ0, θ does this correspond as stationary state under the Hamiltonian evolution?

Motivation: The reason one considers the generating functions instead of, for example the
usual Fock-representation, is the fact that the canonical Fock space does not support states
ψ for which N̄ := 〈ψ,Nψ〉 = ∞. When

∫
θ(x)dx > 0 and |V | = ∞ the states considered

in this exercise obviously yield N̄ =∞ and therefore Fock representation can not be used.

4. (a) Suppose Lk, k = 1, 2, are generators of dynamical semigroups, and let L := L0 + L1.
Show that

etL = etL0 +
∫ t

0
e(t−s)LL1esL0ds

= etL0 +
∫ t

0
e(t−s)L0L1esLds .

Note: Generally (LA)B 6= L(AB) ≡ LAB.

(b) It is well known that the Lindblad representation

L(ρ) := −i[H, ρ] +
1
2

∑
α

(
2LαρL†α − L†αLαρ− ρL†αLα

)
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of the generator L of a completely positive semigroup is not unique. Show that the self-
adjoint operator H and Lindblad operators Lα can be chosen such that TrLα = 0 for every
α.

5. Consider the final section, Quantum Brownian motion, of the lecture notes. Show that the
particle travels ballistically, i.e., Tr (X2ρt) ∼ t provided we set λ = 0.

6. Consider a system consisting of N qubits HS := (C2)⊗N , and an environment consisting
of bosonic field modes HR = Γs(`2(N)). Let the total Hamiltonian be

H ≡ HS + HE + HI

=
N−1∑
j=0

hj ⊗ 1E + 1S ⊗
∑
k

ωka
†
kak +

N−1∑
j=0

Zj ⊗
∑
k

(gjka
†
k + g∗jkak) ,

where Z is the Pauli spin matrix in the z-direction, Zj := 1⊗j−1⊗Z⊗1⊗(n−j−1) is Z applied
to j:th qubit, hj := εjZj with εj > 0, ωk ≥ 0 and gk ∈ C. As usual we set H0 = HS +HE

and simplify notations by writing HS ≡ HS ⊗ 1E , HE ≡ 1S ⊗ HE , σj,z ≡ σj,z ⊗ 1E , etc.
Let us write Ã(t) = eiH0tAe−iH0t for a general observables A and ρ̃(t) := e−iH0tAeiH0t for
density operators on H = HS ⊗HE .
Let us start with a special case N = 1 (you may drop the j-index from Hamiltonian) and
generalize the results for N ≥ 2 later.

(a) Show that [H̃I(t), H̃I(s)] = h(t− s)1SE and find out function h : R→ C.

(b) For a time dependent operator A show that
[
A(t), d

dtA(t)
]

= c(t)I implies d
dt(A

n) =
nAn−1 d

dtA−
1
2n(n− 1)cAn−2.

(c) Denote Ũ(t) := e−iH̃I(t) and use parts (a) and (b) to write

Ũ(t) = eiφ(t) exp
[
−i
∫ t

0
H̃I(s)ds

]
. (0.5)

Express the phase function φ : R→ R in terms of the function h.

(d) Assume the system and the environment are initially uncorrelated, ρSE(0) = ρS ⊗ ρE ,
so that ρ̃S(t) := TrE

{
Ũ(t)ρS ⊗ ρEŨ(t)†

}
. Write (Note: N = 1 here)

〈m|ρ̃S(t)|n〉 = 〈m|ρS |n〉 · χmn(t) , with m,n ∈ {0, 1}N , (0.6)

and express the non-diagonal (m 6= n) suppression factors in the form

χmn(t) = Tr
{
ρE
∏
k

Dk(αk(t))
}

where Dk(z) := eza
†
k+z∗ak , (0.7)

z ∈ C, and αk(t) are explicitly solved analytic function of the parameters {ωl} and {gk}
(recall gk ≡ g0k) for all times t ∈ R. What about the diagonal suppression factors - can
their behavior be deduced without the explicit solution?

(e) Compute χmn(t) when ρE = |Ω〉〈Ω| where Ω is the vacuum state state of the environ-
ment: akΩ = 0, k ∈ N. How does χmn(t) behave for small times?

(f) Suppose environment starts from the Gibbs state ρE = Z−1
β e−βHE , β > 0. Show that

χmn(t) = exp

[
−
∑
k

|αk(t)|2

2
coth

(
βωk

2

)]
.
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(g) Let us now move to the general case N ≥ 2: Even though, [H̃I(t), H̃I(s)] is not a
multiple of identity for arbitrary couplings {gjk} it is still possible to generalize (0.5) for
N ≥ 2. Show that

Ũ(t) = (Ṽ (t)⊗ 1E)e−iH̄(t) ,

where H̄(t) :=
∫ t

0 H̃I(s)ds and [Ṽ (t), Zj ] = 0 for every j = 0, . . . , N − 1.

(h) Suppose N = 2 and assume the only non-zero couplings are gj1 for j = 0, 1. Let
φ := c00|0, 0〉+c11|1, 1〉 and ψ = c10|1, 0〉+c01|0, 1〉, where C2 = span({|0〉, |1〉}). Calculate
Ũ(t)φ⊗ Ω and Ũ(t)ψ ⊗ Ω. Express them w.r.t. coherent states of the field.

(i) Write m ≡ (m0,m2, . . . ,mN−1), n ≡ (n0, n2, . . . , nN−1) ∈ {0, 1}N . Find a general
suppression factor χmn(t) such that (0.6) holds. Express the result in the form analogous
to (0.7) so that functions αjk(t) analogous to αk(t) appear, etc.

(j) Suppose that all the qubits experience the same electromagnetic field, e.g., the case
where couplings are independent of j: gjk = gk. This is the idealization of the case where
qubits are physically so close to each other that they all see the same EM-field. Decompose
the space HS into a direct sum

HS =
⊕
q

H(q)
S ,

of subspaces H(q)
S which have the following property: 〈ψ1, ρ̃S(t)ψ2〉 = 〈ψ1, ρSψ2〉 for every

t ≥ 0 if and only if there exists q such that ψ1, ψ2 ∈ H(q). What is the maximum dimension
of these decoherence free subspaces, e.g., find out maxq dim(H(q)

S ) for given N? On the
other hand, what is the maximum decay rate maxm,n χmn(t) (consider small times) and
how does it compare to the decay rate in the case of N = 1?
Hint: To get an idea of what is going on here consider the exercise (h) with identical
couplings.

(k) Finally, let us consider the other extreme scenario where each qubit is coupled to its own
field, e.g., they are so far apart physically that they see complete different environments.
The simplest way to model this situation is to set gjk = δkj . Suppose ρE is the Gibbs state
(See: part (f)). Express χmn(t) in the form

χmn(t) = e−‖m−n‖HFβ(t) ,

where ‖m‖H :=
∑N−1

j=0 |mj | is the Hamming distance. How much faster is the decay of
χmn(t) compared to the single qubit case in the worst case?

7. Let Nt be a Poisson process with parameter λ > 0 and let Tn be the n jump time, i.e.,
Tn := inf{t ≥ 0 : Nt = n}. Show that the random vector

(
T1/Tn+1, T2/Tn+1, . . . , Tn/Tn+1

)
has the same probability distribution as

(
V

(n)
1 , V

(n)
2 , . . . , V

(n)
n

)
where V (n)

k is the k smallest
number in the set {U1, . . . , Un} of independent and uniformly on (0, 1) distributed random
variables Uj .

8. Consider a generator

L(ρ) := −i[H, ρ] +
∑
α

γα
(
LαρL

†
α −

1
2
L†αLαρ−

1
2
ρL†αLα

)
,

of a completely positive dynamical semigroup. Define super operators {Lα : α = 0, 1, 2, . . . , N}
by Lαρ := γαLαρL

†
α for α ≥ 1 and L0 := i[HC, • ] where HC := H − i

2

∑
α γαL

†
αLα. By

these definitions it follows that L = L0 + S with S =
∑

α≥1 Lα.
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(a) Derive the representation

et(L0+L1) = etL0 +
∞∑
n=1

∫
t≥tn≥···≥t1≥0

N∑
α1,...,αn=1

e(t−tn)L0Lαne(tn−tn−1)L0Lαn−1e(tn−1−tn−2)L0 · · · e(t2−t1)L0Lα1et1L0 dt1 · · · dtn .

Let ω ≡ {(tj , αj) : j ∈ N} ⊂ [0,∞) × {1, 2, . . . , N}. Denote the set of such ω for which
tj < tj+1, j ∈ N, and the number of times tj on any finite interval [s, t] is finite by Ω. Let
us define a super operator for each ω ∈ Ω and t ≥ 0 by setting:

Wω
t (ρ) :=

W̃ω
t ρ

Tr
[
W̃ω
t ρ
]

where

W̃ω
t (ρ) := e(t−tn)L0Lαne(tn−tn−1)L0Lαn−1e(tn−1−tn−2)L0 · · · e(t2−t1)L0Lα1et1L0ρ ,

and n is the largest integer j in the definition of ω such that tj ≤ t. The idea behind all
these definitions is that one may consider ω 7→ Wω

t as a super operator valued random
variable on the probability space (Ω,F ,P) where the probability measure P is defined by
the expression we derived in (a). We do not bother to try to specify the σ-algebra F here.

(b) Show that Wω
t (ρ) is (i) completely positive and (ii) non-linear.

(c) What is the interpretation of Tr [etL0ρ]? Show that d
dtTr [etL0ρ] < 0.

(d) Finally, write Wω
t into form

Wω
t (ρ) =

Mω
t ρM

ω
t

Tr
[
(Mω

t )†Mω
t ρ
] .

This shows us that in the light of general measurement theory one may view Wω
t (ρ) as a

hypothetical random measurement of the the system by the environment.
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