
Computational Statistics
8. exercise session, 16.4.2010

1. Consider simple linear regression, where

[Yi | α, β]
ind∼ N(α + βxi, σ

2), i = 1, . . . , n.

The covariates x1, . . . , xn as well as the error variance σ2 > 0 are assumed to
be known quantities. The prior for θ = (α, β) is the bivariate normal distribution
N(µ0, Q

−1
0 ). (The posterior distribution can be obtained from problem 5 of session

5. The design matrix X consists of a column of ones and a column consisting of
the covariate values.)

a) Show that the components of θ = (α, β) are usually dependent in their joint
posterior, even if they are independent in the prior.

b) If we reparametrize by centering the covariates so that

[Yi | φ, β]
ind∼ N(φ+ βti, σ

2), i = 1, . . . , n,

where the centered covariates are

ti = xi − x̄ = xi −
1

n

n∑
j=1

xj

and φ = α + βx̄, and take φ and β to be independent in their joint prior,

p(φ, β) = N(φ | µφ, σ2
φ) N(β | µβ, σ2

β),

then φ and β are independent in their joint posterior.

(Hint: two random variables with a joint bivariate normal distribution are inde-
pendent if and only if the covariance matrix of the distribution is diagonal, and
this is the case if and only if the precision matrix of the distribution is diagonal.)

2. Consider simple linear regression with the following data.

xi 11 12 13 14 15
yi 1.7 1.3 2.3 3.7 4.0

The error variance σ2 = 1 is assumed known. Derive the Gibbs sampler for the
non-centered (α, β) parametriztion defined in the previous problem. Take α and
β to have independent normal distributions N(0, 100) in the prior.

Run the Gibbs sampler for 2000 steps, discard the burn-in of 1000 first itera-
tions, and produce trace plots and autocorrelation plots for the two parameters.
(In simple linear regression, it would be better to use the centered parametrization
and independent normal priors, since then the Gibbs sampler would produce i.i.d.
samples from the posterior of (φ, β).)



3. If the prior is the logistic distribution and the likelihood corresponds to n
observations from N(θ, 1), then the posterior is proportional to

p(θ | y) ∝ q1(θ) q2(θ), where

q1(θ) =
exp(θ)

(1 + exp(θ))2
, q2(θ) = exp

(
−1

2
n(θ − ȳ)2

)
This is equal to the marginal distribution of θ in the augmented model where

p(θ, z1, z2) ∝ 1(0 < z1 < q1(θ)) 1(0 < z2 < q2(θ))

Derive formulas for the slice sampler (i.e., the Gibbs sampler in the augmented
model). Try it when n = 5 and ȳ = 1. (Hints: the sets {θ : qi(θ) > zi},
i = 1, 2 turn out to be intervals; the intersection of two overlapping intervals,
(a1, b1) ∩ (a2, b2) = (a, b), where a = max(a1, a2) and b = min(b1, b2)).

4. (A changepoint model) Consider the following statistical model,

[Yi | µ1, µ2, k]
i.i.d.∼ Poi(µ1), i = 1, . . . , k

[Yi | µ1, µ2, k]
i.i.d.∼ Poi(µ2), i = k + 1, . . . , n.

The first k observations come from a Poisson distribution with mean µ1 and the
rest from a Poisson distribution with mean µ2. The parameters µ1, µ2 and the
changepoint k are unknown.

In the prior, we take the parameters to be independent with the following
marginal distributions,

p(µ1) = Gam(µ1 | a1, b1), p(µ2) = Gam(µ2 | a2, b2)

p(k) =
1

n− 1
, k = 1, 2, . . . , n− 1.

The prior of the changepoint is the discrete uniform on the indicated set. Here a1,
b1, a2 and b2 are known hyperparameters.

In order to derive the Gibbs sampler, calculate the posterior full conditional
distributions of all the parameters µ1, µ2 and k.

Hint: p(µ1 | ·) and p(µ2 | ·) are standard distributions, but p(k | ·) is not.
However, the full conditional of k is a discrete distribution on a finite set, and
therefore you only need to know how to calculate its pmf in order to be able to
simulate it.

5. Consider the EM algorithm for the genetic linkage example, where we use
the auxiliary variable defined in Example 8.2. (Because the prior is uniform, the
MAP and the ML estimates are the same.) Calculate a formula for Q(θ | θ0), and
obtain a formula for the point θ1 which maximizes it with respect to θ.
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