7. exercise session, 9.4.2010
8. Let the target distribution be $N(0,1)$ and suppose we use the random walk Metropolis algorithm, where the distribution of the increment $w$ in the updating step $\theta^{\prime} \leftarrow \theta+w$ is $N(0,1)$. Suppose we initialize the chain with the value $\theta^{(0)}=-40$ and that the proposed value is $\theta^{\prime}=-40+1.1$.
a) Calculate $\pi(\theta), \pi\left(\theta^{\prime}\right), q\left(\theta^{\prime} \mid \theta\right)$ and $q\left(\theta \mid \theta^{\prime}\right)$ using double precision floating point numbers (which is the accuracy used by R ). Calculate the $\mathrm{M}-\mathrm{H}$ ratio by plugging the four values in eq. (7.2).
b) This time, calculate first the logarithm of the M-H ratio (by calculating values of log-densities) and then exponentiate. What is the the value of the next state $\theta^{(1)}$ in a properly implemented Metropolis-Hastings sampler?
9. (Boundary reflection in random walk M-H). Suppose the parameter space is $(0, \infty)$ and that the proposal $\theta^{\prime}$ is calculated as follows when the current state is $\theta$. Here $g$ is some pdf defined on the whole real line.
10. Draw increment $w$ from pdf $g$.
11. Set $\theta^{\prime} \leftarrow|\theta+w|$.

Find an expression for the M-H ratio. Show that this expression simplifies, when $g$ is a symmetric density. (Hint: in order to find the density $q\left(\theta^{\prime} \mid \theta\right)$, first find the cdf of the proposal distribution, and then calculate the pdf by differentiating.)
3. Suppose the parameter space is $(0, \infty)$ and that the proposal $\theta^{\prime}$ is calculated as follows when the current state is $\theta$.

1. Set $\phi \leftarrow \ln (\theta)$.
2. Draw $v$ from $N\left(0, \sigma^{2}\right)$, and set $\phi^{\prime} \leftarrow \phi+v$.
3. Set $\theta^{\prime} \leftarrow \exp \left(\phi^{\prime}\right)$.

Calculate a formula for the proposal density $q\left(\theta^{\prime} \mid \theta\right)$, and write down the formula for the $\mathrm{M}-\mathrm{H}$ ratio.
4. Suppose that we have a target density $\pi(\theta)$ of a continuous distribution, which is non-zero only on $(0, \infty)$. We decide to reparametrize the statistical model using $\phi=\ln (\theta)$, and to use random walk proposal for $\phi$ using $N\left(0, \sigma^{2}\right)$ as the distribution of the increment.

Calculate a formula for the M-H ratio. What is the relationship of your result with the $\mathrm{M}-\mathrm{H}$ ratio that you calculated in the previous problem?
5. Derive the Gibbs sampler for the two-variate normal distribution $N(\mu, \Sigma)$ truncated to the positive quadrant, which has the unnormalized density

$$
p\left(x_{1}, x_{2}\right) \propto N(x \mid \mu, \Sigma) 1_{+}\left(x_{1}\right) 1_{+}\left(x_{2}\right),
$$

where $x=\left(x_{1}, x_{2}\right)$, and $1_{+}$is the indicator function of the set $(0, \infty)$, i.e.,

$$
1_{+}(u)= \begin{cases}1, & \text { if } u>0 \\ 0, & \text { otherwise }\end{cases}
$$

Hint: the covariance matrix can be written as

$$
\Sigma=\left[\begin{array}{cc}
\sigma_{1}^{2} & \rho \sigma_{1} \sigma_{2} \\
\rho \sigma_{1} \sigma_{2} & \sigma_{2}^{2}
\end{array}\right], \quad-1<\rho<1, \quad \sigma_{1}, \sigma_{2}>0
$$

and the mean vector $\mu$ as $\left(\mu_{1}, \mu_{2}\right)$. The non-truncated bivariate normal density can factorized as

$$
\begin{aligned}
N\left(\left(x_{1}, x_{2}\right) \mid \mu, \Sigma\right) & =N\left(x_{1} \mid \mu_{1}, \sigma_{1}^{2}\right) f_{2 \mid 1}\left(x_{2} \mid x_{1}\right) \\
& =N\left(x_{2} \mid \mu_{2}, \sigma_{2}^{2}\right) f_{1 \mid 2}\left(x_{1} \mid x_{2}\right),
\end{aligned}
$$

and you can look up the formulas for these conditional densities in some book.

