
Computational Statistics
6. exercise session, 26.3.2010

We will apply several techniques to the following genetic linkage model,
which goes back to R. A. Fisher in the 1920’s. 197 animals are distributed into
four categories with the following frequencies

Category 1 2 3 4
Frequency 125 18 20 34

Conditionally on Θ = θ, the four categories have probabilities given by the vector(
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where 0 < θ < 1. We take the uniform distribution on (0, 1) as our prior. The
posterior density is then proportional to the multinomial likelihood,
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where yi is the observed frequency of category i, and y = (y1, y2, y3, y4).
We work with the following unnormalized target density

q(θ) = θy4 (1− θ)y2+y3 (2 + θ)y1 = θ34 (1− θ)38 (2 + θ)125, 0 < θ < 1,

which is proportional to the posterior density and also proportional to the likeli-
hood. The posterior mode is

θ̂ =
15 +

√
53809

394
≈ 0.6268214980.

The normalizing constant can be found exactly using computer algebra. It is∫ 1

0

q(θ) dθ = 0.2357695164567474 · 1029

with sixteen significant digits. The derivatives of L(θ) = log q(θ) are given by
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θ(1− θ)(2 + θ)

and
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.



1. Approximate the normalizing constant of the posterior in the genetic linkage
example by the grid method. First define a function, say upost, to evaluate the
unnormalized posterior density. Then you can define the grid and evaluate the
function on the grid as follows in R.

h <- 1/N

tgrid <- seq(h/2, 1 - h/2, length = N)

upost(tgrid)

Compare the grid method approximation to the exact value of the normalizing
constant, when N is 10, 20, 40 and 80. (In R, the numbers are by default printed
only with seven significant digits. In order to see variable res, with ten significant
digits, call print(res, digits = 10)).

R has the function integrate for one-dimensional numerical integration. Try,
what you get with integrate(upost, 0, 1)

2. Now we apply Laplace’s method to approximate the normalizing constant
c =

∫
q(θ) dθ of an unnormalized univariate posterior q(θ) = q(θ | y). We first

form the second degree Taylor approximation for log q(θ) centered at its mode θ̂,

log q(θ) ≈ log q(θ̂)− 1

2
A(θ − θ̂)2.

Exponentiating, we form an approximation to q(θ), which we then integrate over
the whole real line with respect to θ in order to find the approximation c̃ to c.

a) Give a formula for c̃. Evaluate c̃ in the genetic linkage example.

b) What is the connection of the following calculation and of the normal approx-
imation (6.4)?
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)
3. Evaluate the two Laplace approximations, eq. (6.11) and eq. (6.12), for the
posterior expectation of Θ in the genetic linkage example.

4. Once again, consider E[Θ | y] in the genetic linkage example. Calculate it

a) by numerical integration,

b) by Monte Carlo integration, where you use one of the following methods: the
grid method, accept–reject (use the prior as the proposal), or importance sam-
pling (with instrumental density equal to prior).
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5. When the statistical model includes a discrete parameter, then we often need
to handle sums or ratios of the form

s =
k∑

j=1

qj, pi =
qi∑K

j=1 qj
, i = 1, . . . , K

where qj > 0 are positive numbers. Sometimes the numbers qj are so small, that
they cannot be represented as floating point numbers, whereas their logarithms
can. So,

zj = log qj ⇔ qj = exp(zj).

Find a way to calculate log(s) and the numbers p1, . . . , pK under such a situation.
Hint: take the largest of the qj:s as a common factor.

In particular, calculate log(s) and p1, p2, p3, when

(z1, z2, z3) = (−1000,−1001,−1002).

(In this case the floating point representation of each exp(zi) is 0, at least when
you use double precision floating point numbers, as R does.)
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