
Computational Statistics
5. exercise session, 19.3.2010

1. In this problem the posterior distribution is Gam(a, b) with a = 11 and
b = 5.1.

a) Calculate 90 % equal tail posterior interval using the quantile function of the
gamma distribution (R function qgamma()).

a) Calculate 90 % HPD interval.

Hint for part b: You can eliminate the coverage requirement∫ U

L

Gam(θ | a, b) dθ = 0.9

by using the quantile function of the Gam(a, b) distribution. (If L = L(t) is the t
quantile q(t), then U = U(t) must be ...) Then search iteratively for t such that
f(U(t))− f(L(t)) is approximately zero, where f is the pdf of the posterior. You
can do this either graphically or by using some zero-finding routine such as the R
function uniroot().

2. (Using importance sampling to change the prior.) Conditionally on θ, let
Yi ∼ Exp(θ) independently. Suppose that n = 10, and that the observed sum
of the Y :s is s =

∑n
i=1 yi = 5. (The sum is a sufficient statistic.) We want to

calculate the posterior mean, median and 5 % and 95 % quantiles under both of
the following priors.

a) The conjugate prior Gam(a, b), with a = 1, b = 0.1.

b) The Weibull prior Weib(2, 10).

Under the conjugate gamma prior of part a, the analysis is simple. The poste-
rior is a gamma distribution (see Sec. 1.4 or Sec. 5.3.2). Its mean can be calculated
from a known formula and its quantile function is available (qgamma() in R).

To analyze the posterior under the prior of part b, first generate a large sample
(say, of size N1 = 105) from the posterior of part a, and estimate the posterior
mean by importance sampling. Next, estimate the 5 %, 50 % and 95 % quantiles
by using SIR: take a smaller sample (say, of size N2 = 104) from the initial sample
by using the importance weights as probability weights (R function sample()).
Finally, calculate empirical quantiles (function quantile()).



3. Consider normal observations with known mean µ and unknown precision θ,
i.e.,

Yi | θ
i.i.d.∼ N(µ,

1

θ
), i = 1, . . . , n.

Take for θ the imporper prior

p(θ) ∝ 1

θ
, θ > 0.

Determine the posterior. Under what conditions is it proper?

4. (Linear regression with a non-conjugate prior). Consider the model

[Y | β, τ ] ∼ Nn(Xβ,
1

τ
I)

p(β, τ) = Np(β | µ0, Q
−1
0 ) Gam(τ | a, b).

Here X is a known n×p model matrix, τ > 0 (a scalar) is the precision parameter
of the error distribution, the coefficient vector β has p components, and the pa-
rameters β and τ are assumed to be independent in their joint prior distribution.
(This is not any standard conjugate prior.) An alternative (and perhaps more
familiar) way of writing the likelihood of the model is to state that

Yi = xT
i β + εi, i = 1, . . . , n,

where εi ∼ N(0, σ2) independently of each other and independently of β, the error
variance σ2 ≡ 1/τ , and xT

i = X(i, :) is the ith row vector of the model matrix.

a) Write the joint density p(y, β, τ) (including all the normalizing constants).

b) Show that the full conditional p(τ | β, y) is a gamma density Gam(τ | a1, b1),
and give formulas for the hyperparameters a1 and b1. (Recall that det(sA) =
sn det(A) whenever s is a scalar and A is a n× n matrix.)

5. We continue with the linear regression model of the previous problem. Show
that the full conditional p(β | τ, y) is a normal distribution N(µ1, Q

−1
1 ), and give

formulas for µ1 and Q1.
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